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Paddy rice is a staple food of three billion people in the world. Timely and accurate estimation of the paddy rice

planting area and paddy rice yield can provide valuable information for the gov-ernment, planners and decision

makers to formulate policies.

: optical remote sensing  microwave remote sensing

1. Introduction

Paddy rice, as a major staple food, feeds almost half the world’s population . As the population grows, the

demand for food grows. In terms of water use, about one-quarter to one-third of the world’s freshwater resources

are used for paddy rice irrigation . Paddy rice fields are a major source of methane (CH ) emissions . Globally,

methane (CH ) emissions from paddy rice account for more than 10% of the total amount of CH  in the

atmosphere . Methane is the second most abundant greenhouse gas after carbon dioxide . Paddy rice fields

serve as habitats for birds, ducks, and other species, which are the origin of highly pathogenic avian influenza .

Therefore, the development of paddy rice distribution maps is of great significance for understanding and

assessing the environmental conditions of food security, climate change, disease transmission and water use at

regional, national and global levels .

An in-depth understanding of paddy rice cultivation and physiology is the premise of paddy rice mapping. The

general physical characteristics of different crops are different, and the characteristics of paddy rice at different

growth stages are also different. The paddy rice growth period can be divided into four stages : (1) from sowing

to transplanting in the nursery stage (~1 month), (2) from the transplanting to the heading stage (1.5 to 3 months),

(3) from the heading to the reproductive stage with flowering (~1 month, including start, heading and flowering,

stem elongation and panicle development), and (4) from flowering to mature stages at full maturity (~1 month,

including milk stage, dough, and ripe grains). The morphology of paddy rice at the main growth stages is shown in

Figure 1. Paddy rice is the only crop that needs extensive water during the growing phase and is the only staple

that needs transplanting. Therefore, paddy rice can be identified by studying the sensitive spectral bands or indices

during the period of water, soil, and vegetation mixing. Temporal variation in water–soil–vegetation composition is a

key factor in paddy rice identification.
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Figure 1. The example of paddy rice growth stages.

In previous research, some scholars summarized and analyzed the content related to rice mapping. Dong et al. 

discussed the evolution of rice mapping methods from the 1980s to 2015 and summarized the methods used to

characterize each stage and future development trends. Claudia et al. mainly discussed the basic work of rice

mapping. Based on a large number of studies, they summarized the characteristics of rice mapping (such as

sensors, vegetation index, biomass) and summarized the application fields of different satellite sensors. Mostafa et

al.  discussed the applicability of remote sensing images to rice area mapping and yield prediction. Methods and

limitations of mapping and yield prediction using different remote sensing sensors are briefly described. Niel et al.

  mainly discussed the current status of the application of remote sensing technology in rice planting areas in

Australia, including crop identification, area measurement, and yield prediction.

2. Evolution of Paddy Rice Mapping Methods

Remote sensing platforms can repeatedly observe the Earth’s surface and collect a variety of data, so several

remotely based methods have been developed to map paddy rice areas around the world. There are three types of

methods based on different data sources. These methods are described in the following sections.

2.1. Optical Remote Sensing-Based Mapping Methods

Optical remote sensing sensors have been used extensively for mapping paddy rice areas around the world. The

earliest method of paddy rice monitoring was to extract paddy rice by using remote sensing images and

classification methods. Later, with the emergence of the vegetation index, phenological algorithm, cloud computing,

and machine learning, the precision of paddy rice mapping based on optical remote sensing was constantly

improved.

2.1.1. Machine Learning

Machine learning methods are commonly used methods of rice mapping, including traditional machine learning and

deep learning. Traditional machine learning includes supervised and unsupervised classification, such as

ISODATA, decision tree (DT), random forest (RF), support vector machine (SVM). The principle of this type of
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method is to first collect images and sample training data and determine the decision rules to extract rice based on

characteristic parameters.

Supervised classification is based on the samples provided by the known training area to obtain feature

parameters to establish decision rules. Unsupervised classification obtains feature parameters through computer

agglomeration statistical analysis of images to establish decision rules. The latter is an image classification method

without a priori classification criteria. The input into the classifier is mainly preprocessed spectral images . In

recent years, normalized difference vegetation index (NDVI) temporal curves have also been used as the

characteristic parameter for classification [18]. Manjunath et al.  used multitemporal SPOT VGT NDVI data for

analysis. The ISODATA clustering method is used to distinguish between paddy rice areas and non-paddy rice

areas. Then, the auxiliary data set is used to further subdivide the areas. Similarly, Okamoto et al.  used this

method to extract paddy rice fields in Heilongjiang. The difference is that this study used Landsat TM/ETM+ as the

data source. Gumma et al. used MODIS data products combined with the k-means clustering algorithm to map the

paddy rice area. In 2011 and 2015, they used the same method to map paddy rice in different regions . The

results were relatively good, with a correlation of more than 90% with local statistics. Paddy rice mapping is also

carried out using supervised classification methods, such as SVM  and RF . The advantage

of this method is its strong operability. The basic principles are easy to understand. The difficulty of the supervised

method may be the collection of training samples. However, Google Earth’s high-resolution images and the global

geo-referenced field photo library (http://eomf.ou.edu/photos/) provide convenience. The disadvantage of this

method is that the validity of the image will affect the accuracy of the results. For example, cloudy and foggy areas,

broken terrain areas, and mixed pixel problems will affect the results. In addition, the threshold settings in

supervised classification and unsupervised classification methods will change according to the study area.

Deep learning performs well in image recognition and signal processing. In optical remote sensing, the CNN

method is mainly used. Convolutional neural network (CNN) is well applied in the field of image analysis. In terms

of scene classification, the CNN algorithm has higher classification accuracy than traditional algorithms. CNN is

composed of several layers with different functions: input layer, convolution layer, pool layer, fully connected layer

and output layer. The input layer is used to import training data, and the convolutional layer is used to extract

features. The steps of applying this method to rice mapping are as follows: (1) Use the University of California

Merced land-use data set, land-use/land-cover (LULC) Map, Google Earth high-resolution images, and field survey

data to pretrain the model. (2) Input the original image into the model and output the result. In this step, in addition

to the spectral data, NDVI, Land Surface Temperature (LST), and related phenological information can also be

imported into the model . Common training outputs classification results. Zhao et al.  combined CNN

classification results with the results of NDVI under the DT to achieve further classification and output the final

classification results.

The accuracy of this method is generally high. The overall accuracy is greater than 93%. The advantage is

improved classification of complex surfaces and the broken landscapes. The disadvantage is that complex models

require a lot of data for training. If the tagged data are not enough to support the entire training process, the deep
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learning model will have poor results. Therefore, the correct amount of training data guarantees the reliability and

rationality of the training model.

2.1.2. Time Series Similarity Method

A new method that appeared in recent years is the time series similarity method of dynamic time warping (DTW)

distance . Time series similarity measures are used to describe the characteristics of data changes over time.

DTW distance was initially applied to text data matching, speech processing, and visual pattern recognition. The

research shows that algorithms based on the nonlinear bending technique can obtain high recognition and

matching accuracy. The steps in this method are as follows: first, establish the standard NDVI sequence curve of

the paddy rice growth cycle through field sample data, and then determine the threshold based on the DTW

distance between the NDVI time series of standard paddy rice growth and the NDVI time series of the pixels to

extract the paddy rice field. The principle of the time sequence similarity method based on the DTW distance is as

follows:

Suppose two time series, i.e. , , with respective

lengths of m and n. Construct an m × n matrix   and define the distance between each element as

. In the matrix , a winding path is set by a group of adjacent matrix elements, and

notes for W = {?_1,?_2,···,?_k} and the element in W are defined as ; this path meets the following conditions:

Monotonicity constraint: , 

Continuity constraint:

Endpoint constraint: .

This element satisfies the condition , and thus,

. The DTW algorithm can be summarized by applying

ideal dynamic programming to find the best (i.e., least bending) cost path, as shown in Formula (1):

where i = 2,3.m, j =2,3.n, D (m, n) is the minimum cumulative value of the winding paths.

The DTW distance can reflect the similarity and difference between the standard paddy rice growth NDVI time

series and the NDVI time series of a pixel. In the DTW algorithm, when the DTW distance is short, the curve of the

NDVI time series shows high similarity. We performed correlation analysis on the NDVI time series and ground

[24][25]
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truth data to determine the DTW distance threshold for identifying single- and multi-cropping paddy rice. Assuming

that the DTW distance of the pixel is greater than the threshold shown, the pixel is unlikely to be paddy rice.

In 2014, Guan et al.  extracted rice areas from Southeast Asia and initially explored the applicability of this

method in cloudy and rainy areas with good results. In 2018, the same team used this method to extract rice areas

in Vietnam, and the results correlated well with statistical data (). This result showed once again the potential of this

method for rice mapping in monsoon regions and multiple cropping systems with diverse cultivation processes [25].

The accuracy of this method is good, and the overall accuracy is 83%. The advantage of this method is that it is

suitable for cloudy and rainy areas, and the similarity analysis based on DTW distance can solve the overall curve

deviation caused by the flexibility of paddy rice planting. This method has good application potential in different

crops and different cropping systems. The disadvantages are the determination of the empirical model threshold

and the determination of the NDVI standard curve. Affected by the spatial resolution of satellite data, the accuracy

of the national scale is high and that of the provincial scale is low.

2.1.3. Vegetation Index Feature-Based Method

The third method is the vegetation index feature-based method. This method can be divided into two categories.

One is the features are obtained through mathematical analysis. The threshold formula is established by

mathematical analysis of the vegetation index time series curve. The other is the phenology algorithm. The

principle is to extract paddy rice, which is grown on flooded soils, based on the unique physical characteristics.

NDVI < Land Surface Water Index (LSWI) or Enhanced Vegetation Index (EVI) < LSWI during the flooding period

of paddy rice, but the EVI value of other vegetation (non-flooded) is usually greater than the LSWI value.

Mathematical methods include correlation analysis, analysis of variance, and normal distribution. The principle of

the correlation analysis method is to extract 100 sample pixels to generate the NDVI time profile curve and

calculate the average . Then, the correlation coefficient of 100 pixels is calculated to set the threshold for rice

extraction. Then, the symbol test method is used to evaluate the difference between each pair of data from two

related samples to compare the significance of the two samples. The variance analysis method uses multitemporal

image data to calculate the time series curves of the vegetation index and calculate the standard deviation and

variance of the vegetation index in each pixel, and then determines the threshold range by Formula (2). If the pixel

value falls within the threshold range, it is determined as a paddy rice pixel . The normal distribution method has

the following assumption: the probability distribution function (PDF) of the land cover type follows a normal

distribution . We use the mean and standard deviation of each land cover type to define its normal distribution

function, and two parameters are obtained from the training data set. The key to correctly distinguishing one

specific land cover type is to minimize the overlaps between the target and the neighboring ordinary PDFs. For two

land cover types L1 and L2, assuming L1~N(, ) and L2~N(, ), then the intersection between L1 and L2 is calculated

by Formula (3).
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where , n, S, μ, σ, , and  are the average of the variance of the paddy rice field, the maximum distance from the

standard deviation, the standard deviation of the variance of the paddy rice field, and the average variance of the

image to be classified, the mean of each land cover type, the standard deviation of each land cover type, the

intersection between two land cover types. Generally, the two land cover types can be thought separable if   is

outside of [μ − σ, μ + σ].

Chen used statistical methods to classify double-cropping paddy rice in Taiwan . In addition, this paper also

compared the accuracy of different smoothing methods with different NDVI time curves. Studies have shown that

classification methods based on empirical mode decomposition (EMD) filtered data produce better classification

results than wavelet transform. Nuarsa et al.  used the method of variance analysis and MODIS images to extract

paddy rice from Bali, Indonesia. The results were good, and the kappa coefficient reached 0.8371. Wang et al. 

used a normal distribution to process the threshold value of the vegetation index curve for paddy rice extraction in

the eastern plains of China. This method was mainly applied to single-season rice. This method is only applied to

the key phenological phase images of paddy rice growth. In addition, some studies have used the difference in

NDVI during the critical phenology period to define the threshold for paddy rice mapping. Liu et al.  proposed a

subpixel method that used the relationship between the coefficient of variation (CV) of the LSWI and the planting

fraction to estimate the planting fraction of paddy rice. The new method calculated the scale of paddy rice area

based on the CV of the LSWI determined for pure water bodies and upland pixels, which can be automatically

obtained from the MCD12Q1 land cover product. The overall accuracy was 88%.

The overall accuracy of this method is greater than 85%, and the kappa coefficient is greater than 0.7. The method

has the advantages of simple principles and easy operation. The disadvantage is that the applicability of cloudy

areas needs to be investigated. Mixed pixels and boundary effects will reduce the classification accuracy.

Furthermore, it remains to be studied whether the accuracy of the method will be improved under the conditions of

improved image spatial resolution, extended time series, and large-scale research areas.

The use of the phenology algorithm began in approximately 2000. Xiao et al. discovered the characteristics of the

vegetation index and conducted paddy rice extraction studies in large areas such as South Asia and central and

southern regions . The results were good and showed the effectiveness of the phenology algorithm in paddy rice

mapping. The previous method has some drawbacks. For example, the critical time window for paddy rice growth

is obtained based on a large amount of agricultural phenology data. Incomplete agricultural phenology data in

some areas will hinder the implementation of this method.
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In recent years, paddy rice mapping methods have been continuously improved. The improvement is reflected in

the use of high-resolution data sources, the increase in the complexity of the study area, the study of long-term

sequences, and the increase in auxiliary materials (phenology information, other land cover masks, etc.). First, we

will discuss high-resolution data sources. Previously, the MOD09A1 MODIS product was mostly used, but it has a

spatial resolution of 500 m. For precision agriculture, there will still be mistakes. Subsequent studies used Landsat

images and HJ-1A/B with a spatial resolution of 30 m, and Sentinel-2 with a spatial resolution of 10 m . The

accuracy has been further improved. Other studies have considered the issue of temporal resolution. MODIS and

Landsat data have been integrated, and these data were then combined with a phenology algorithm for paddy rice

mapping . Second, the complexity of the study area also has an impact. Early studies were mostly concentrated

in South Asia and other regions, and summer rainfall was mostly taken into consideration. With the expansion of

paddy rice in Northeast Asia, the research area moved northward . Compared with South Asia, the impact of

early spring snowmelt should be considered due to the climate of the northeast region. Some scholars have

studied the changes in the area of paddy rice in high temperature disaster areas . Initially, research focused on

paddy rice extraction in a specific area in a certain year to verify the accuracy of the algorithm. Subsequent related

studies focused on long-term sequence studies to study the expansion of paddy rice fields and changes in the

planting area . Finally, the increase in auxiliary information should also be considered. Some recent studies have

attempted to use surface temperature or air temperature to define the time window that defines the temperature

that should be reached during the key growing period of paddy rice, effectively excluding the effects of summer

rainfall and early spring snow melt on monitoring . Other relevant mask data also include cloud cover, snow

cover, seasonal water cover, evergreen vegetation, and DEM. The algorithm flow chart is shown in Figure 2. The

statistical data brought by the state’s advocacy for refined agriculture have greatly facilitated the extraction of

paddy rice. In addition, some studies have used the phenology algorithm to extract the spatial distribution of paddy

rice with different planting intensities, which showed the potential of the phenology algorithm in describing two- and

three-season paddy rice . Some studies have added the results of field spectrometer measurements on the

basis of previous optical remote sensing data to verify the changes in the rice vegetation index curve.

The accuracy of rice mapping methods based on phenology is usually high, exceeding 80%. The advantage of this

method is that it is suitable for long-term sequence dynamic analysis and large-scale observations. Based on

phenological observations, the rice growth period can be accurately identified, reducing the need for data

processing work. The principle of the method is simple and operable. The disadvantages of this method include

errors in the cloud coverage area, mixed pixel problems, and limited observations over scattered landscapes. The

recognition accuracy of clouds is high, but the recognition accuracy of cloud shadows is usually low. Because cloud

shadow pixels usually meet the threshold of LSWI–EVI > 0, they may affect paddy rice field mapping. In addition,

the inundation of the surface caused by extreme precipitation events can also affect paddy rice mapping.
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Figure 2. The workflow for phenology and pixel-based paddy rice mapping, major modules include time window

determination of the rice transplanting phase (starting point: SOT, ending point: EOT), Landsat data preprocessing,

phenology- and pixel-based mapping for non-cropland masks and paddy rice flooding, validation based on the

areas of interest (AOIs) from very high-resolution (VHR) images and field photos.

2.1.4. Object-Based Image Analysis

There are three key steps of the object-based image analysis method: (1) segmentation of generated image object;

(2) determination of features based on feature extraction of objects; and (3) classification (multiple classification

methods). Su  focused on using phenology to classify paddy rice under the object-based image analysis

framework. The main purpose of this framework is to study the applicability of phenology in the localization of

paddy rice based on object-based image analysis. The image segmentation is performed using the multiresolution

segmentation algorithm in eCognition software. Then it is classified based on the neural network classification

method. Singha et al. , in order to improve the segmentation quality, improved the fusion criterion on the basis of

the commonly used fractal network evolution method, and a new segmentation algorithm was proposed. An

unsupervised scale selection method was proposed to determine the optimal scale parameters for image

segmentation, and to automate the process of determining scale parameters. After segmentation, geometric,

spectral and texture features were extracted and input into the subsequent classification process. Paddy fields and

non-paddy fields were classified by a random forest classifier. Zhang et al.  also performed image segmentation

by using the multiresolution segmentation algorithm in eCognition 9.0 software. The prototype objects were

classified by using the random tree (RT) classifier.

The accuracy of this method is generally better than that of other methods. The overall accuracy is over 90%, and

the kappa >0.82. The advantages of this method are that geometric information, texture information and spectral

information can be used simultaneously to improve the extraction accuracy, and the method analyzes objects by

integrating neighborhood information rather than pixels, which will reduce the “salt and pepper” effect when

rendering heterogeneous landscapes to classify paddy rice fields more accurately. Object-based image analysis
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shows advantages in identifying broken paddy rice fields. The disadvantage of this method is that the accuracy of

the method is related to the accuracy of data, cloud pollution, spatial resolution, and processing of mixed pixels. In

addition, image segmentation is still a challenging problem. Improving the quality of image segmentation is a key

factor.

2.2. Microwave Remote Sensing-Based Mapping Methods

The use of a microwave source is a second type of mapping method for paddy rice. The first spaceborne synthetic

aperture radar (SAR) sensor for paddy rice mapping used data from the European Remote Sensing Satellite 1

(ERS-1), which showed good results . These groundbreaking studies were often limited to small-scale studies

due to a lack of high-quality ground truth images, single polarization, or large data volumes. Subsequent research

began to focus on using multiple SAR sensors to improve rice mapping over large land areas, and ERS-1, ERS-2,

and RADARSAT were used to test various algorithms. Recent research included RADARSAT-2 data, combined

optical and SAR data, object-oriented crop mapping, and Sentinel-1 C-band SAR data. Sentinel-1 satellite data can

be obtained freely and openly all over the world, further promoting large-scale rice monitoring operations using

radar data.

The main advantage of microwave remote sensing is theoretically the ability to acquire images under any weather

conditions, such as cloud cover, rain, snow, and solar irradiance. In most cases, paddy rice cultivation is carried out

during the rainy season when overcast and rainy weather prevails. Therefore, the radar image collected by the

microwave sensor is an excellent image source for mapping paddy rice areas. In the growth process of paddy rice,

the time series change in the radar backscatter coefficient is the key factor to distinguish paddy rice areas. The

characteristic of the backscattering coefficient in the growth stage of paddy rice is that in the nutrition and

reproduction stage, the backscattering increases continuously until it reaches the maximum at the heading stage.

With the development of paddy rice phenology, stems elongate and leaf area, plant water and biomass increase.

These changes increase the area available for radar wave reflection, leading to an increase in measured

backscatter. After the heading stage, due to plant water, leaf area and biomass begin to decrease, the

aforementioned scattering effect is reduced, resulting in a decrease in SAR backscatter. This time backscattering

behavior is illustrated in Figure 3, which is based on multiyear advanced synthetic aperture radar (ASAR) wide

swath mode (WSM) time series data and shows the SAR backscattering behavior with triple-cropped rice growing

stages.
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Figure 3. SAR backscatter behavior with triple-cropped rice growing stages based on a multiyear ASAR WSM time

series .

2.2.1. Empirical Model

The earliest method of applying radar data to paddy rice mapping was to observe the changes in the

backscattering coefficient during the paddy rice growth cycle to establish an empirical model. The principle of this

method is to establish a mathematical formula based on the change in the backscattering coefficient during the

paddy rice growth cycle, determine the threshold, coefficient and other parameters, and extract and map the paddy

rice according to the parameters. In 2001, Shao et al.    investigated the backscattering behavior of paddy rice

throughout the growth cycle, and paddy rice monitoring and extraction were carried out according to its

characteristics. An empirical model of the paddy rice growth cycle and backscattering coefficient was established

with an accuracy of 91%. However, the disadvantage of this method is that it has a single channel and a fixed

angle of incidence. It is difficult to estimate multiple parameters for a target, and the target recognition ability needs

to be strengthened.

In the past few years, with the advancement of algorithms and the diversity of data, empirical models have also

been developed. In 2011, Bouvet used multitrack wide-swath data sets combined with former methods, using

temporal backscatter changes as a classification feature for mapping. Compared with the previously used single-

track narrow-swath data sets, this method can significantly increase the observation frequency and the size of the

mapping areas . The disadvantage is that the establishment of the empirical model must use the existing

detailed land cover data to establish the equation and determine the classification threshold. When no ground

information is available, the values in the previous literature are used, and there will be errors.

Radar data contain band information of different frequencies, and most previous methods have used C-band

information. In 2018, Hoa et al.  used COSMO-SkyMed X-band SAR data to analyze the changes in the SAR

intensity over time for short- and long-period paddy rice varieties and field seeding periods in the Anjiang region of

the Mekong Delta. First, based on the survey data, a comprehensive analysis of the characteristics and cultivation

techniques of paddy rice crops in the region was carried out. Then they analyzed the differences of backscattering

intensity between paddy rice and other land cover types in this area under vertical transmission/vertical receive
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(VV), horizontal transmission/horizontal receive (HH) and HH/VV, and obtained indicators closely related to paddy

rice mapping. Paddy rice fields were distinguished from other LULCs, and indicators derived from HH polarization

could be used to map other LULCs (water, forests, and built-up areas). These maps can be used as auxiliary data

to improve the accuracy of the results. The results showed that, due to the vertical structure of the paddy rice

plants, this ratio was a good indicator for paddy rice field mapping. Vertically polarized waves are more attenuated

than horizontally polarized waves, so the ratio of the backscattered intensity of HH and VV is higher over paddy

rice than most other land cover types. The accuracy of the paddy rice planting area has been found to be as high

as 92%. However, for provincial and national surveying and mapping, the coverage of satellite data sources is a

limitation. In this case, this method is more suitable for large coverage data with frequent repetition cycles.

The advantage of this method is that the idea is relatively simple, and the threshold can be developed for analysis

and extraction after determining the threshold according to the data extraction features of the long-term sequence.

The disadvantage is that this method depends on long-term observation data and is limited by data availability. The

temporal resolution must meet the needs of the paddy rice growth cycle. On the other hand, there must be

accurate prior knowledge in the study area to facilitate the establishment of equations and verification of results.

The universality of the method is also limited. The backscattering coefficients of paddy rice will show different

characteristics in different regions, and the parameters will change.

2.2.2. Machine Learning

In recent years, the machine learning method has mostly been used for paddy rice mapping based on radar data,

which extracts the eigenvalues of the backscatter coefficient and inputs these values into the classifier for paddy

rice mapping. Classification models mainly include traditional machine learning models (DT, SVM, RF) and deep

learning models such as CNN and recurrent neural network (RNN). There are similar methods based on optical

remote sensing data. The principles of these two methods are similar. The difference is the input of the training

sample. The former method’s input data include optical images and vegetation index curves. The latter inputs the

backscatter coefficient value extracted after radar image processing. Both methods will consider the input of

phenology information and texture feature information to improve the accuracy of the results.

In 2015, Nguyen et al.  normalized the data collected over many years and multitrack SAR with a statistical method

and then classified it through a knowledge-based DT method. This study obtained an overall accuracy of 85.3%,

kappa coefficient of 0.74. He et al.  used the backscattering coefficient and its combination with phenological

information as inputs to the DT classifier for classification, and HH/VV, VV/VH, and HH/VH ratios were found to

have the greatest potential for phenology monitoring. The overall accuracy level of 86.2% was obtained in this

study. In March 2017, the Sentinel-2 satellite was launched. The following radar data research mostly used

Sentinel-2 data as the data source. In 2019, the temporal behavior of the SAR backscattering coefficient over 832

plots containing different crop types was analyzed. Using the derived metrics, paddy rice plots were mapped

through two different methods of DT and RF. The overall accuracy is high; the former has an overall accuracy of

96.3%, and the latter is 96.6% . In addition, researchers have done further research on the combination of SAR

and deep learning. Wang et al.  used crowdsourced data, Sentinel-2 and DigitalGlobe images, and CNN to map
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crop types with an overall accuracy of 74%. Secondly, we consider the RNN model. The commonly used method in

the RNN model is the long short-term memory (LSTM) model and its improvements, such as bidirectional LSTM

(Bi-LSTM). Researchers use the model and backscatter coefficient time series data to achieve a paddy rice map.

Compared with traditional machine learning models , the research results show that the overall accuracy

of RNN model results is 95%, and the accuracy of deep learning models is better than traditional machine learning

models. One point to mention is that different radar polarization methods have different results. In 2016, Hoang and

others used SAR to map paddy rice crops in the Mekong Delta . This study used two methods of single

polarization, dual polarization and full polarization to map paddy rice, and the classification accuracy increased with

the complexity of the polarization method. In 2018, Lasko et al. used a random forest algorithm and Sentinel-1

radar time series images to draw a double-season and single-season paddy rice map of Hanoi, Vietnam, with

resolutions of 10 and 20 m, respectively, using VV and VH polarization methods . The overall accuracy of the

10-meter VV and VH polarization was the highest (93.5%). Subsequent research can focus on the comparison of

multipolarized SAR data with different frequencies (C, X, L) to obtain the optimal combination.

Moreover, in 2017, Clauss et al.  proposed a method of drawing paddy rice planted area maps using Sentinel-1

time series using superpixel segmentation and phenology-based DTs. Superpixel segmentation is the

establishment of a spatially averaged backscattering time series, which has the characteristics of robustness to

speckles and reduces the amount of data to be processed. However, the classifier depends on the phenology-

based empirical thresholds of the research site. If this method is applied to other regions, it is recommended to

adapt the threshold parameters.

The advantage of this method is that paddy rice mapping is carried out by means of machine learning, feature

extraction is performed using a large amount of data, and the overall accuracy is improved. However, this method

relies on the input of training data to determine the parameters, and different regions will result in different

parameters. The completeness and diversity of the training data determine the accuracy of this method.

In general, the accuracy of extraction algorithms based on optical remote sensing improves with the improvement

of the method and the improvement of data quality. Most of the time series studies focus on annual series changes.

The study areas are relatively large, covering the national scale, and these data generally have high spatial

resolution. From the original spatial resolution of 500 m to the current spatial resolution of 30 m, it has been

continuously improved, and the characteristics of the data are mainly large-scale. The research mainly focuses on

the dynamic changes in the paddy rice area and the changes in the centroid of the paddy rice planting in the

region. Extraction algorithms based on microwave remote sensing and rice monitoring based on the backscattering

coefficient generally have high accuracy, approximately 90%, and the time series are mainly concentrated on the

monthly scale. The study area is mostly within the province and city, with a resolution of 10 m, and its largest

advantage is the tropics, where cloudy and rainy conditions dominate.

2.3. Integration of Optical and Microwave Remote Sensing-Based Mapping
Methods

[51][52][53]

[54]

[55]

[56]
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Optical remote sensing images and microwave data have their respective advantages. To improve the data

accuracy, integrated analysis using both methods is essential. The integration methods are mainly the following,

and the accuracy of the results is higher than that of a single data source.

2.3.1. Complementary Method

The main principle of this method is to first obtain the rice extraction layer with optical remote sensing or radar data

and then supplement the layered data from another data research institute or use these two data sources as the

input layer for the classifier for a comprehensive analysis. This method mainly includes the following

complementary methods: (Ⅰ) The phenological information is determined based on the optical data. Radar images

are collected based on phenological information for rice mapping. (Ⅱ ) The optical features of rice and the radar

features are input into the classifier together for rice mapping. (Ⅲ) The results are output separately based on the

two data sources. The intersection of the two results is treated as the final result.

Using the first type of method, Asilo et al.  extracted paddy rice planting information based on MODIS and SAR

images, and the results indicated that MODIS can be used to guide SAR image acquisition and planning to a large

extent. Torbick et al.  conducted a large-scale paddy rice extraction experiment in Myanmar. In this study,

Landsat 8 and other data were used to generate a large-scale land cover map, and then the radar image

backscatter coefficient was used to create a detailed range of paddy rice masks. Using the second type of method,

Mansaray et al.  focused on rice extraction in Shanghai, China. By combining the backscatter coefficient of the

radar image with the vegetation index, the decision-making classification method was used to extract rice. Tian et

al.  used the characteristics of the backscattering coefficient and NDVI to enhance image information and

combined this information with k-means unsupervised classification to determine the rice area of Poyang Lake in

China. Fiorillo et al.  used Sentinel1 and Sentinel-2 data to extract rice spectra and backscatter coefficient

features in degraded areas, and input them to the RF classifier together. The combination of Sentinel-1 and

Sentinel-2 dense time series provided reliable predictors for RF classification, and the results were good. The

overall accuracy is greater than 80%. Chen et al.  applied this method in a multi-cloud area and used the Google

Earth Engine (GEE) platform. Overall accuracy is 66%. In the third type of method, Guo et al.  proposed an

optical SAR collaborative paddy rice extraction method. The characteristics of rice growth were collected and

analyzed under optical images and SAR for classification. Based on the rule that pixels with one of the

classification results as rice are classified as rice, a collaborative fusion method was developed. In one area of

Australia, the overall accuracy rate reached 94.7%. Ramadhani et al. first extracted rice using Sentinel-1 and -2

and MODIS data, respectively combined with the SVM classification method, and then fused the two results to

generate a multitemporal rice map. The advantage of this method is that it combines the advantages of two data

sources. This method also effectively avoids the defects of a single data source. To a certain extent, the accuracy

of the results has been improved. However, shortcomings still exist. For example, the spectral similarity of different

crops is one shortcoming. Both data sources suffer from this problem. Whether data fusion effectively avoids this

problem remains to be studied.

2.3.2. Comparison Class Method

[57]

[58

[59]

[60]

[61]

[62]

[63]
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The principle of this method is mainly based on different data combination methods, different classification

methods, and the results of different regions to obtain the optimal combination of methods for paddy rice extraction.

For example, the results of the same data input to different classifiers can be compared, and the results of radar

data in different polarization modes combined with the same optical index can also be compared. Comparisons

between pixel-based classification and area-based classification have also been conducted.

Onojeghuo et al.  took the Sanjiang Plain in northeast China as the research area, utilized NDVI images and

dual-polarization (VH/VV) SAR as input data, and used RF and SVM machine learning classification algorithms to

perform paddy rice mapping. The results showed that the RF algorithm applied to multitemporal VH polarization

and NDVI data produced the highest classification accuracy (96.7%). Zhang et al.  first performed image

preprocessing on Google Earth Engine (GEE) and combined the pixel-based classification results with object-

based segmentation results to output a paddy rice area map. The combination of the two methods eliminated the

noise that is common in medium- and high-resolution pixel classification and brought the rice planting area closer

to official statistics. As a result, rice maps with a resolution of 10 m were established in Heilongjiang, Hunan and

Guangxi provinces of China, with a total accuracy of approximately 90%. In the same year, Yang et al. 

combined the characteristics of multiple watershed and mountainous areas in Wuhua County, South China, and

used region-based and pixel-based methods to map the paddy rice planting area. The results showed that the

accuracy of the area-based method was 1.18% higher than that of the pixel-based method (91.38%). The area-

based method mainly eliminates the influence of speckle noise. Park et al.  classified paddy rice based on

different data input combinations (original image, vegetation index, backscatter coefficient) combined with RF and

SVM. The results showed that the fusion optics and SAR data had the highest accuracy. In this study, the Paddy

Rice Mapping Index (PMI) was established based on the spectral and phenological characteristics of paddy rice,

which could be used to extract paddy rice over a large area.

In fact, this kind of method is complementary to the first method. Here, we focus on the comparison between

different methods. Researchers can choose the appropriate method according to their own research needs. For the

advantages and disadvantages, please refer to the advantages and disadvantages of the first method. There is

limited literature on data fusion, and such studies have only appeared in recent years. These studies catered to the

development trend of multisource data. Therefore, the problem of how to achieve the best fusion effect will be a

focus of future work.
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