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Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are responsible for the degradation of a wide

range of extracellular matrix proteins, which are involved in many cellular processes to ensure the normal development of

tissues and organs. Overexpression of MMPs has been observed to facilitate cellular growth, migration, and metastasis of

tumor cells during cancer progression. A growing number of these proteins are being found to exist in the nuclei of both

healthy and tumor cells, thus highlighting their localization as having a genuine purpose in cellular homeostasis. The

mechanism underlying nuclear transport and the effects of MMP nuclear translocation have not yet been fully elucidated.

To date, nuclear MMPs appear to have a unique impact on cellular apoptosis and gene regulation, which can have effects

on immune response and tumor progression, and thus present themselves as potential therapeutic targets in certain types

of cancer or disease. Herein, we highlight and evaluate what progress has been made in this area of research, which

clearly has some value as a specific and unique way of targeting the activity of nuclear matrix metalloproteinases within

various cell types. 
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1. Introduction

Matrix metalloproteinases (MMPs) are involved in the degradation of extracellular matrix (ECM) proteins and regulate

many fundamental cellular processes during normal bodily development and function . As the ECM is important in

maintaining the mechanical and biochemical properties of tissues, its normal turnover and regulation by MMPs is

necessary to permit multiple functions, as in the cleavage and activation of signaling molecules, cellular differentiation,

and wound healing . However, dysregulation of MMP activity can contribute to a variety of pathological

conditions. For example, some have been seen to modulate matrix erosion in osteoarthritis and rheumatoid arthritis,

whereas expression of others is associated with the formation of atherosclerotic lesions, platelet aggregation, and the

regulation of factors associated with cardiovascular disease . Predominantly, the roles of MMPs in malignant tumor

initiation, metastasis, and angiogenesis have received the greatest attention and which have highlighted them as good

potential therapeutic targets for the treatment of certain types of cancer .

To date, 26 human MMP proteins have been identified, which belong to the M10 family of metallo-endopeptidases .

Based on substrate specificity, MMPs can be further categorized into collagenases (MMP-1, MMP-8, MMP-13, and MMP-

18), gelatinases (MMP-2 and MMP-9), stromelysins (MMP-3, MMP-10, MMP-11, and MMP-17), matrilysins (MMP-7 and

MMP-26), membrane-type MMPs (MMP-14, MMP-15, MMP-16, MMP-17, MMP-24, and MMP-25), and others (MMP-12,

MMP-19, MMP-20, MMP-21, MMP-22, MMP-23, MMP-28, and MMP-29) . Generally speaking, they are expressed by a

broad range of cell types, such as epithelial cells, fibroblasts, osteoblasts, endothelial cells, vascular smooth muscle,

macrophages, neutrophils, lymphocytes, and cytotrophoblasts .

Structurally, MMPs share a common protein domain structure (Figure 1). For most MMPs, the main components are a

signal peptide (that directs synthesized protein into the secretory pathway), a highly conserved amino-terminal pro-

domain, a catalytic domain that contains a zinc ion binding site, a linker domain, and a carboxyl-terminal hemopexin-like

domain (HEX), that determines substrate specificity and localization and contributes to the enzymatic activity of MMPs .
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Figure 1. Domain structures of human matrix metalloproteinases (MMPs). Here the domain structures of nuclear MMPs

(nMMPs) and MMPs, which have not been found in the nuclei but possess nuclear localization signals (NLSs) (placed in

brackets), are presented. NLSs are indicated by the red asterisks (if their nuclear-trafficking properties have been proven

experimentally) or by the orange asterisks (if the NLS has been identified by bioinformatics alone). Horizontal lines

indicate the isoforms of MMPs, which have been found in nuclei. SP, signal peptide; Pro, pro-domain; FC, furin cleavage

site; FD, fibronectin domain; HEX, hemopexin-like domain; TM, trans-membrane domain; CT, cytoplasmic tail; GPI,

glycosylphosphatidylinositol.

These proteases are synthesized in the form of pre-pro-MMPs, with their enzymic activation occurring through the

process of maturation as the proteins progress through the secretory pathway . The first step of maturation is removal of

the secretory signal peptide following the course of protein translation, giving rise to an inactive pro-MMP in which the

inhibition of the catalytic site occurs through its resident Zn  ion binding a cysteine residue within the “cysteine switch”

motif (PRCGXPD) present in the pro-domain . Activation of the pro-MMP may occur in a variety of different ways,

arising in a number of MMP forms containing the full-length pro-domain, a processed form of the pro-domain, and in

MMPs lacking the pro-domain. In the former two MMP derivatives, conformational changes caused by mechanical or

chaotropic agents can lead to the disruption of the Zn -Cys interaction resulting in pro-MMP activation in the absence of

pro-domain cleavage . Moreover, processed cleavage and removal of the pro-domain, by plasmin or trypsin, can

mediate a conformation change of the protease resulting in full activation of the MMP intermediate . Normally, full

cleavage of the pro-domain is either mediated by the furin pro-protein convertase in the trans-Golgi network, auto-

catalytically, or by other MMPs at the cell’s surface, either within the ECM or the nucleus . The activity of MMPs

can also be regulated by post-translational modifications, such as glycosylation, phosphorylation, and by

glycosaminoglycans (GAGs). For example, glycosylation can stabilize a complex between MMP-14, TIMP2, and pro-

MMP-2 as a step necessary for the cell-surface activation of MMP-2 . Alternatively, glycosylation can promote MMP-9

secretion and activation, while also stabilizing the formation of MMP-17 dimers . As an important step for the classical

mode of MMP activation, a number of recent studies have also reported that some MMPs are also responsive to redox-

mediated activation .

The tissue inhibitors of metalloproteinase (TIMPs) have also gained significant importance over the years based on their

developmental role in normal tissue homeostasis and disease progression and their abilities to modulate MMP protease

activity . Four TIMPs (TIMPs 1-4) have been identified, and their mechanisms of MMP inhibition have been established

through a number of structural studies. Residues 1–4 of the TIMP-1 amino-terminal domain interact with the primed side

of the MMP binding pocket, where Cys-1 can coordinately bind the catalytic site Zn  ion. Simultaneously, five residues

(spanning amino acids 66–70) from TIMP-1 can occupy the non-primed site . These potential modes of binding were

also shown to be highly conserved among TIMP-2, TIMP-3, and TIMP-4 . Biologically, elevated TIMP expression

levels have been shown to contribute to enhanced ECM accumulation and deposition, while reduced TIMP expression

leads to enhanced matrix proteolysis, thus highlighting their importance in modulating ECM dynamics and plasticity .

TIMPs can also form non-inhibitory pro-MMP/TIMP/MT-MMP complexes, as in the instance of TIMP-2 complexing with

MMP-14 and which can activate pro-MMP-2 in human fibrosarcoma, breast, and melanoma cell lines . While TIMPs are

generally found within the ECM, a number of studies have demonstrated that they may also reside in the nucleus of cells,

as seen for TIMP-1 .
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Over the years, matrix metalloproteinases have been pursued as good targets for therapeutic development , and have

the potential to be targeted at several levels of their synthesis and maturation, the proposed stages of which include

inhibition at the transcriptional level, during zymogen activation, and at the level of substrate catalysis by the active

enzyme . At the moment, there are MMP-directed targeted strategies coming into fruition for the treatment of

inflammation, heart disease, lung diseases, and ischemic stroke . Simultaneously, the search for more

specific and better MMP inhibitors is still ongoing, driven by limited options for targeting specific MMPs within a clinical

setting . Consequently, novel strategies embodying greater specificity and efficacy have taken on a greater priority in

targeting MMPs.

2. Functions and Localization of Nuclear MMPs (nMMP) and Nuclear TIMP
(nTIMP). 

Over the last ten years, the nuclear localization of MMPs (nMMPs) has been an increasingly reported phenomenon, which

has been observed in high-grade tumors, correlated with tumor volume, and in some instances has been associated with

poor prognosis in a number of disease types (Table 1) . Collectively, such findings suggest an important

functional role for nuclear MMPs and that such a localization effect does have biological and clinical significance. In

support of this, it is interesting to note that nuclear localization has been reported for other ECM proteases as well. For

example, nuclear cathepsins L and D have been reported to exhibit biological effects which can contribute to tumor

progression . Collectively, the localization of such proteases have the potential to activate or deactivate

transcription factors, regulate chromatin remodeling, apoptosis, alter the structural elements of the nuclear matrix, and

participate in molecular events that lead to cell proliferation and carcinogenesis .

Table 1. Functions and localization of nuclear MMPs (nMMP) and nuclear TIMP (nTIMP). The table represents nMMPs

and nTIMP1 and their functions in different cells and tissues. Malignant cells and tissues are indicated in red. Other

pathological conditions are indicated in purple; a-deoxyribonucleic acid.

nMMP/nTIMP Function Cell Line or Tissue Type Ref.

MMP-1

Apoptosis ↓ Human Muller glia

Carcinogenesis ↑ Human breast cancer

Not defined Human keratinocytes, gingival tissue, megakaryocytes

MMP-2

Blood-brain barrier
↓ Mouse brain

DNA  reparation ↓ Human mesothelioma, cardiac myocytes; rat liver; pig pulmonary artery
endothelial cells

DNA reparation ↓
Apoptosis ↑ Rat brain neurons

Carcinogenesis ↑ Human hepatocellular carcinoma

Muscle adaptation
to training ↑ Rat skeletal muscle fibers

Not defined
Human melanoma cells, cutaneous squamous cell carcinoma, actinic
keratosis, normal skin, megakaryocytes, endothelial cells; rat neurons;
mouse skeletal muscle fibers

MMP-3

Apoptosis ↑ Human hepatocellular carcinoma, hepatocellular carcinoma cell line,
peritumoral liver, liver myofibroblasts; Chinese hamster ovary cells

Cell migration ↑ Human normal, osteoarthritic chondrocytes

Immune response ↑ Human embryonic kidney epithelial cell line, macrophages

Not defined Human megakaryocytes

MMP-7

Cell migration and
wound healing ↑ Human prostate cancer cell lines; mouse prostate tumor

Not defined Human adenocarcinoma, condyloma, normal squamous, columnar
epithelium
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nMMP/nTIMP Function Cell Line or Tissue Type Ref.

MMP-9

DNA reparation ↓
Apoptosis ↑ Rat brain neurons

DNA reparation ↓ Human epithelioid mesothelioma cell line

Osteoclastogenesis
↑ Mouse preosteoclasts

Not defined Human tubular atrophic renal tubules, gingival tissue, megakaryocytes; dog
neuropil and neurons

MMP-12 Immune response ↑ Human cervical cancer cell line, myocardial cells, bronchial epithelial cell
line, mouse fibroblasts, cardiomyocytes cell line

MMP-13

Carcinogenesis ↑ Human oral tongue squamous cell carcinoma

Not defined Human chondrosarcoma of the jaws, brain tissues; rat brain tissues,
chondrocytes

MMP-14
Carcinogenesis ↑ Human hepatocellular carcinoma, hepatocellular carcinoma cell line

Immune response ↑ Mouse bone marrow-derived macrophages

MMP-16 Not defined Human adenocarcinoma, condyloma, normal squamous, columnar
epithelium

TIMP1
Cell growth ↑ Human gingival fibroblasts cell line

Not defined Human breast carcinoma cell line, endothelial cells; rat neurons

What signaling cues cause MMPs to be directed to the nucleus still largely remains unknown, with a number of

mechanisms being proposed, which stem from environmental factors to cellular metabolism . Nevertheless, for several

MMPs, researchers have been able to propose some molecular mechanisms responsible for nuclear MMP translocation

.
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