

LncRNAs HOTAIR in BC therapy

Subjects: **Oncology**

Contributor: Monica Cantile , Maurizio Di Bonito , Margherita Cerrone , Francesca Collina , Michelino De Laurentiis , Gerardo Botti

Breast cancer (BC) is the most common cancer type among women, and morbidity and mortality rates are still very high. Despite new innovative therapeutic approaches for all BC molecular subtypes, the discovery of new molecular biomarkers involved in tumor progression has been fundamental for the implementation of personalized treatment strategies and improvement of patient management. Many experimental studies indicate that long non-coding RNAs (lncRNAs) are strongly involved in BC initiation, metastatic progression, and drug resistance. In particular, aberrant expression of HOX transcript antisense intergenic RNA (HOTAIR) lncRNA plays an important role in BC contributing to its progression and represents a predictor of BC metastasis. For its proven prognostic value, HOTAIR could represent a potential therapeutic target in BC.

breast cancer

lncRNA HOTAIR

drug resistance

breast cancer therapy

1. Introduction

Breast cancer (BC) is the most prevalent cancer type in women and a leading cause of cancer mortality in the world. Breast cancer is a very heterogeneous disease, and its histological classification is mainly based on the expression of hormonal receptors such as estrogen receptor (ER), progesterone receptor (PR), and ERBB2 receptor (HER2) [1]. With respect to gene expression, BC is classified into five molecular subtypes including luminal ER positive (luminal A and luminal B), HER2 enriched, basal-like (also known as triple-negative breast cancer), and normal breast-like subtype [2]. Currently, the choice of routine treatment strategy is based on various factors including tumor size, morphology, grade, metastases, and ER, PR, and HER2 expression [3]. In the last ten years, new innovative therapeutic approaches have been optimized, in particular for triple-negative breast cancer [4]. However, the identification of other prognostic/predictive markers is fundamental for implementing personalized treatment strategies in BC. In this context, our understanding of the mechanisms that regulate gene expression has focused on a class of non-coding RNA molecules (lncRNAs) which have aberrant activity that has largely been described in BC tumor progression [5].

Long non-coding RNAs (lncRNAs) represent a class of lncRNAs, longer than 200 nucleotides, involved in various aspects of cellular homeostasis, such as proliferation, apoptosis, mobility, gene transcription, and post-transcriptional processing [6][7][8]. They can be classified into different categories based on their genomic position, subcellular localization, and function [8]. Regarding their location in the genome, lncRNAs are classified into sense, antisense, bidirectional, and intergenic and intronic lncRNAs, while according to their subcellular location, lncRNAs are classified as nuclear lncRNAs and cytoplasmic lncRNAs. The identification of their precise cellular sub-

localization is fundamental to understanding their cellular activity [9]. Long non-coding RNAs are essential epigenetic regulators of transcription functioning as: i) molecular signals to regulate transcription in response to various stimuli [10]; (ii) decoys, modulating the transcription by sequestering regulatory factors and reducing their availability [11]; (iii) scaffolds, playing a structural role as platforms for the assembly of multiple-component complexes such as ribonucleoprotein (RNP) complexes [12]; (iv) enhancer RNAs, influencing the three-dimensional (3D) organization of DNA (chromatin interactions) [13]; (v) short peptides coders which may also interfere with transcription [14].

Long non-coding RNA's role in cancer has been widely described, highlighting their capability to influence cell cycle regulation, cell proliferation, trans-differentiation, survival, immune response, metastatic progression, and therapeutic response [15]. Moreover, many lncRNAs are transcriptionally regulated by key tumor suppressors or oncogenes [16][17]. In cancer, lncRNAs are mainly involved in chromatin remodeling [18]. They can directly interact with many histone and DNA-modifying enzymes to participate in covalent modifications of histones or DNA. Furthermore, several lncRNAs have recently been found to be capable of modulating the non-covalent, ATP-dependent chromatin remodeling process, indicating an extensive role of lncRNAs in chromatin regulation.

Being lncRNAs expressed in a specific manner in a type of cancer and regulating fundamental processes during tumor progression, they could represent not only exceptional diagnostic, prognostic, and predictive markers but also potential therapeutic targets. Many lncRNAs have been associated with BC, and most of them interfere with crucial processes during BC carcinogenesis [19][20].

2. LncRNAs in Breast Cancer

Long non-coding RNAs play a main role in BC tumor progression (Table 1). They are able of inducing the metastatic process by modulating cell proliferation, invasion, migration, epithelial–mesenchymal transition (EMT), and self-renewal capacity. Clinically, many lncRNAs are involved in therapeutic sensitivity, and they are becoming important circulating biomarkers [21][22].

Among the lncRNAs involved in BC evolution, *H19* is one of the most studied. Its aberrant expression is associated with an increased risk of BC, both in human and cell models [23]. Moreover, its detection in plasma of BC patients also suggests its use as a circulating marker [24]. The expression level of *H19* is associated with tumor size, lymph nodes status, and poor prognosis, especially in triple-negative BC (TNBC) [25]. Furthermore, the overexpression of *H19* is able to induce chemotherapy resistance in BC cells and its silencing sensitizes BC endocrine therapy resistance (ETR) cells to tamoxifen and fulvestran treatment [26][27]. Long non-coding RNA *XIST* (X inactive specific transcript) is strongly associated with BC evolution, and it is able to suppress BC cell growth, migration, and invasion via the miR-155/CDX1 axis [28]. Aberrant expression of *BCAR4* (breast cancer anti-estrogen resistance 4) is mainly involved in acquiring BC tamoxifen resistance [29] in an independent manner of estrogen receptor I (ESRI) [30]. In addition, *BCAR4* is able to promote metastasis through the interaction with chemokine CCL21 and its receptor CXCR7 in BC cell models [31]. Colon cancer-associated transcript 2 (CCAT2) is overexpressed, in particular, in TNBC cells, in which it is able to promote cell proliferation, migration, and invasion. In addition,

aberrant expression of *CCAT2* significantly induces stem-like characteristics in TNBC cells [32]. Urothelial carcinoma associated 1 (*UCA1*) is upregulated in tamoxifen-resistant BC cells [33], and its knockdown reduces cell survival and migration ability and promotes apoptosis of tamoxifen-resistant BC cells [34]. The role of lncRNA *MALAT1* (metastasis-associated lung adenocarcinoma transcript 1) in BC has been widely discussed. Many studies suggested its role as a metastasis-promoting marker [35], but other in vitro and xenograft studies have highlighted contradictory effects on BC tumor cells [36]. A recent genetic study has showed that *MALAT1* is able to bind and inactive *TEAD* (*TEA* domain transcription factor 1), a pro-metastatic transcription factor, and consequently suppresses BC metastasis [37]. Nuclear enriched abundant transcript 1 (*NEAT1*) is another lncRNA involved in breast gland development, and it has been associated with BC evolution. It is able to promote proliferation and progression in BC cells [38]. Nuclear enriched abundant transcript overexpression is associated with tumor size, histological grade, metastasis, and poor survival [39]. Most of the other lncRNAs described in the literature are mainly associated with therapeutic resistance in BC. The upregulation of lncRNA-ATB (long non-coding RNA activated by TGF-Beta) [40], *TINCR* (Tissue differentiation-inducing non-protein coding RNA) [41], *UCA1* [42], *AGAP2-ASI* (Arf GAP with GTP-binding protein-like domain, Ankyrin repeat, and PH domain 2) [43], and the downregulation of *GAS5* (growth arrest-specific 5) [44] are strongly involved in acquiring trastuzumab resistance in BC patients. The upregulation of *BCAR4*, *UCA1*, and *CCAT2*, as previously indicated, together with the aberrant expression of lncRNA-ROR (regulator of reprogramming) [45], lncRNA uc.57 [46], *LINP1* (LncRNA in non-homologous end-joining pathway 1) [47], *DSCAM-ASI* (Down syndrome cell adhesion molecule-antisense RNA 1) [48], *ADAMTS9-AS2* (*ADAM* metallopeptidase with thrombospondin Type 1 motif 9-antisense RNA 2) [49], *CyTOR* (cytoskeleton regulator RNA) [50], and the downregulation of *GAS5* [51] are involved in the promotion resistance mechanisms of tamoxifen and chemotherapy.

Table 1. Main lncRNAs (long non-coding RNAs) involved in BC (breast cancer) progression.

LncRNA	Expression	Activity	Drug Resistance	References
<i>H19</i>	Upregulated	Promoting tumor growth, metastasis, poor prognosis	Endocrine therapy and chemotherapy resistance	[23][24][25][26][27]
<i>XIST</i>	Downregulated	Suppressing cell growth, migration, and invasion	Chemotherapy resistance	[28]
<i>BCAR4</i>	Upregulated	Promoting tumor growth, metastasis, poor prognosis	Endocrine therapy resistance	[30][31][32]

<i>CCAT2</i>	Upregulated	Promoting cell proliferation, migration, invasion, stem-like phenotype	Endocrine therapy resistance	[33]
<i>UCA1</i>	Upregulated	Promoting cell proliferation, migration, invasion	Endocrine therapy and trastuzumab resistance	[34][35]
<i>MALAT 1</i>	Upregulated	Promoting cell proliferation, migration, invasion, stem-like phenotype	-	[36][37][38]
<i>NEAT1</i>	Upregulated	Promoting tumor growth, metastasis, poor prognosis	Chemotherapy resistance	[39][40]
<i>LncRNA-ATB</i>	Upregulated	Promoting cell proliferation, migration, metastasis	Trastuzumab resistance	[41]
<i>GAS5</i>	Downregulated	Promoting apoptosis	Endocrine therapy and chemotherapy resistance	[45]
<i>AGAP2-ASI</i>	Upregulated	Promoting cell proliferation, migration, invasion	Trastuzumab and chemotherapy resistance	[44]
<i>TINCR</i>	Upregulated	Promoting cell proliferation, migration, invasion, suppressing apoptosis	Trastuzumab resistance	[48]
<i>LncRNA-ROR</i>	Upregulated	Promoting cell proliferation, migration, invasion	Chemotherapy resistance	[46]
<i>CyTOR</i>	Upregulated	Promoting tumor growth, metastasis, poor prognosis	Endocrine therapy resistance	[51]

<i>LINP1</i>	Upregulated	Promoting tumor growth, metastasis, poor prognosis, involved in DNA repair mechanisms	Endocrine therapy and chemotherapy resistance	[52]
--------------	-------------	---	---	------

3. LncRNA HOTAIR and Its Role in Cancer

HOX transcript antisense RNA (*HOTAIR*) is an lncRNA 2158 bp long, consisting of 6 exons, located on chromosome 12q13.13 between *HOXC11* and *HOXC12* genes [52]. Its promoter contains binding sites for many transcription factors, such as AP1, Sp1, ERE elements, HRE elements, and NF- κ B [53]. HOX transcript antisense RNA (*HOTAIR*) is a key regulator of chromatin status and a mediator of transcriptional silencing [53]. Early studies showed that *HOTAIR* is capable to bind the PRC2 (Polycomb repressive complex) at the 5' end [52]. The formation of the molecular complex is able to maintain cell stemness and suppress cell differentiation by trimethylation of the H3K27 histone complex and subsequent transcriptional repression of differentiation genes [53]. HOX transcript antisense RNA (*HOTAIR*) is also able to interact at the 3' end with the lysine-specific histone demethylase 1A (*LSD1*), another chromatin modifier which is critical for gene silencing [54]. Lysine-specific histone demethylase 1A (*LSD1*) can form a multiprotein complex via activation of RE1-silencing transcription factor (REST) and CoREST which are critical players in gene silencing [54]. HOX transcript antisense RNA (*HOTAIR*) acts as a molecular scaffold for the conjunction of the two complexes. The *HOTAIR*-PRC2-LSD1 complex leads epigenetic changes contributing to the targeted gene silencing and represses their transcription via H3K27 trimethylation (PRC2 activity) and H3K4 demethylation (*LSD1* activity). For example, the *HOTAIR*-PRC2-LSD1 complex can be redirected towards the 5' end of the HOXD locus on chromosome 2 where the genes, implicated in metastatic suppression are silenced by methylation and demethylation of H3K27 and H3K4, respectively [55].

HOX transcript antisense RNA (*HOTAIR*) can also alter gene expression both at the post-transcriptional level, either by base pairing with translation factors or ribosomes to control translation or by binding to splicing factors to modulate splicing, and at the post-translational level. For this last function, it is reported that *HOTAIR* could serve as a ubiquitination protein and subsequent degradation platform [56].

Most lncRNAs possess miRNA recognition elements (MREs), suggesting that the transcription of some miRNAs is regulated by lncRNAs and some lncRNAs are involved in synthesis, maturation, and degradation of miRNAs [57]. Many studies reported the interaction between *HOTAIR* and microRNAs highlighting that these interactions are able to modulate different cellular processes [58][59].

During embryogenesis, *HOTAIR* is involved in the development of the lumbosacral region, and its activity is closely linked to the recruitment of PRC2 to its targeted HOX D genes for their repression.

Several studies have pointed out the role of *HOTAIR* as a cell cycle-associated gene. HOX transcript antisense RNA (*HOTAIR*) promotes the cell cycle passing through the restriction point during the G1 phase by regulating CDK4/6-cyclin D and the Rb-E2F pathway [60].

In the last ten years, the aberrant *HOTAIR* expression in the majority of solid cancers has been reported, underlining its main role in modulating tumor initiation, growth, angiogenesis, progression, recurrence, drug resistance, and poor prognosis [61][62]. In urological cancers, *HOTAIR* overexpression is able to increase prostate cancer cells growth and invasion by binding androgen receptor (AR) protein and blocking its degradation [63]. In bladder cancer patients, *HOTAIR* is an independent prognostic factor of tumor recurrence [64]. It is also involved in chemo sensitivity to doxorubicin [65] and can be detected in the urine of bladder cancer patients [66]. In gynecological tumors, *HOTAIR* is overexpressed in epithelial ovarian cancer tissues and correlates with International Federation of Gynecology and Obstetrics (FIGO) stage, histological grade of the tumor, lymph node metastases, and poor survival [67]. In cervical cancer tissues, *HOTAIR* is associated with clinical-pathological features, lymph node metastases, and prognosis [68]. HOX transcript antisense RNA (*HOTAIR*) is also able to interact with different mRNAs in cervical cancer cells modulating cell growth and proliferation [69]. Moreover, the detection of circulating levels of *HOTAIR* is strongly associated with advanced tumor disease, lymph nodes metastases, and poor survival in cervical cancer patients [70]. Aberrant *HOTAIR* expression in endometrial carcinoma correlates with grade, lymph nodes metastases, and poor prognosis [71], and it is associated with cisplatin resistance acquisition [72]. In gastrointestinal tract tumors, *HOTAIR* upregulation appears as an important marker in colorectal cancer [73] and gastric cancer [74], showing a strong relation with stage, lymph nodes, distant metastases, and worse survival. In gastric cancer, *HOTAIR* has been detected in patients' plasma, and its circulating level is able to predict which patient can benefit from fluorouracil and platinum combination therapy [74]. In liver cancer, *HOTAIR* is overexpressed and strongly correlates with clinical-pathological features, and tumor progression [75]. In addition, *HOTAIR* silencing increases chemotherapy sensitivity to cisplatin and doxorubicin in hepatocellular carcinoma patients [76]. In oral cancers, *HOTAIR* overexpression has been described in laryngeal squamous cell carcinoma (LSCC) and is associated with histopathological grade and stage [77]. Also, in LSCC cells, *HOTAIR* is involved in the modulation of sensitivity to cisplatin [78]. In lung cancer, aberrant expression of *HOTAIR* correlates with advanced stage, lymph nodes metastases, and poor prognosis [79]. A higher *HOTAIR* expression is also strongly associated with cisplatin resistance in non-small cell lung cancer (NSCLC) patients [80]. Circulating *HOTAIR* has been detected in lung cancer plasma, and it appears to be associated with clinical-pathological features of the patients [81].

Many studies have highlighted the role of *HOTAIR* also in tumor microenvironment (TME) intracellular signaling. In TME, *HOTAIR* is able to modulate different molecular pathways involved in tumor phenotype modifications during metastatic progression [82].

References

1. Lakhani, S.R.; Ellis, I.O.; Schnitt, S.J.; Tan, P.H.; van de Vijver, M.J. WHO Classification of Tumours of the Breast 4th ed. IARC Press :Lyon, France, 2012.
2. Sørlie, T. Molecular portraits of breast cancer: Tumour subtypes as distinct disease entities. *Eur J. Cancer*. 2004, 40, 2667–2675.
3. Woolston, C. Breast cancer. *Nat*. 2015, 527, S101, doi:10.1038/527s101a.
4. Lyons, T.G. Targeted Therapies for Triple-Negative Breast Cancer. *Curr. Treat. Options Oncol.* 2019, 20, 82, doi:10.1007/s11864-019-0682-x.
5. Huang, Q.-Y.; Liu, G.-F.; Qian, X.; Tang, L.-B.; Huang, Q.-Y.; Xiong, L.-X. Long Non-Coding RNA: Dual Effects on Breast Cancer Metastasis and Clinical Applications. *Cancers* 2019, 11, 1802, doi:10.3390/cancers11111802.
6. Kopp, F.; Mendell, J.T. Functional Classification and Experimental Dissection of Long Noncoding RNAs. *Cell* 2018, 172, 393–407, doi:10.1016/j.cell.2018.01.011.
7. Peng, W.-X.; Koirala, P.; Mo, Y.-Y. LncRNA-mediated regulation of cell signaling in cancer. *Oncogene* 2017, 36, 5661–5667, doi:10.1038/onc.2017.184.
8. Iyer, M.K.; Niknafs, Y.S.; Malik, R.; Singhal, U.; Sahu, A.; Hosono, Y.; Barrette, T.R.; Prensner, J.R.; Evans, J.R.; Zhao, S.; et al. The landscape of long noncoding RNAs in the human transcriptome. *Nat. Genet.* 2015, 47, 199–208, doi:10.1038/ng.3192.
9. Zhang, L.; Xiong, M.; Xu, C.; Xiang, P.; Zhong, X. Long Noncoding RNAs: An Overview. *Advanced Structural Safety Studies* 2016, 1402, 287–295, doi:10.1007/978-1-4939-3378-5_22.
10. Pandey, R.R.; Mondal, T.; Mohammad, F.; Enroth, S.; Redrup, L.; Komorowski, J. *Kcnq1ot1* antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. *Mol. Cell*. 2008, 32, 232–246.
11. Kallen, A.N.; Zhou, X.-B.; Xu, J.; Qiao, C.; Ma, J.; Yan, L.; Lu, L.; Liu, C.; Yi, J.-S.; Zhang, H.; et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. *Mol. Cell* 2013, 52, 101–112, doi:10.1016/j.molcel.2013.08.027.
12. Yang, L.; Froberg, J.E.; Lee, J.T. Long noncoding RNAs: Fresh perspectives into the RNA world. *Trends Biochem. Sci.* 2014, 39, 35–43.
13. Hou, Y.; Zhang, R.; Sun, X. Enhancer LncRNAs Influence Chromatin Interactions in Different Ways. *Front. Genet.* 2019, 10, 936, doi:10.3389/fgene.2019.00936.
14. Ingolia, N.T.; Lareau, L.F.; Weissman, J.S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. *Cell* 2011, 147, 789–802.

15. Guttman, M.; Amit, I.; Garber, M.; French, C.; Lin, M.F.; Feldser, D.; Huarte, M.; Zuk, O.; Carey, B.W.; Cassady, J.P.; Cabili, M.N.; Jaenisch, R.; Mikkelsen, T.S.; Jacks, T.; Hacohen, N.; Bernstein, B.E.; Kellis, M.; Regev, A.; Rinn, J.L.; Lander, E.S. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. *Nature* 2009, 458, 223–227.

16. Huarte, M.; Guttman, M.; Feldser, D.; Garber, M.; Koziol, M.J.; Kenzelmann-Broz, D.; Khalil, A.M.; Zuk, O.; Amit, I.; Rabani, M.; Attardi, L.D.; Regev, A.; Lander, E.S.; Jacks, T.; Rinn, J.L. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. *Cell* 2010, 142, 409–419.

17. Zheng, G.X.; Do, B.T.; Webster, D.E.; Khavari, P.A.; Chang, H.Y. Dicer-microRNA-Myc circuit promotes transcription of hundreds of long noncoding RNAs. *Nat. Struct. Mol. Biol.* 2014, 21, 585–590.

18. Sanchez Calle, A.; Kawamura, Y.; Yamamoto, Y.; Takeshita, F.; Ochiya, T. Emerging roles of long non-coding RNA in cancer. *Cancer Sci.* 2018, 109, 2093–2100.

19. Zhang, T.; Hu, H.; Yan, G.; Wu, T.; Liu, S.; Chen, W.; Ning, Y.; Lu, Z. Long Non-Coding RNA and Breast Cancer. *Technol. Cancer Res. Treat.* 2019, 18, 18, doi:10.1177/1533033819843889.

20. Youness, R.A.; Gad, M.Z. Long non-coding RNAs: Functional regulatory players in breast cancer. *Noncoding RNA Res.* 2019, 4, 36–44.

21. Zhang, K.; Luo, Z.; Zhang, Y.; Wang, Y.; Cui, M.; Liu, L.; Zhang, L.; Liu, J. Detection and analysis of circulating large intergenic non-coding RNA regulator of reprogramming in plasma for breast cancer. *Thorac. Cancer* 2018, 9, 66–74.

22. Han, L.; Ma, P.; Liu, S.M.; Zhou, X. Circulating long noncoding RNA GAS5 as a potential biomarker in breast cancer for assessing the surgical effects. *Tumour Biol.* 2016, 37, 6847–6854.

23. Lottin, S.; Adriaenssens, E.; Dupressoir, T.; Berteaux, N.; Montpellier, C.; Coll, J.; Dugimont, T.; Curgy, J.J. Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. *Carcinogenesis* 2002, 23, 1885–1895.

24. Zhang, K.; Luo, Z.; Zhang, Y.; Zhang, L.; Wu, L.; Liu, L.; Yang, J.; Song, X.; Liu, J. Circulating lncRNA H19 in plasma as a novel biomarker for breast cancer. *Cancer Biomark.* 2016, 17, 187–194.

25. Shima, H.; Kida, K.; Adachi, S.; Yamada, A.; Sugae, S.; Narui, K.; Miyagi, Y.; Nishi, M.; Ryo, A.; Murata, S.; Taniguchi, H.; Ichikawa, Y.; Ishikawa, T.; Endo, I. Lnc RNA H19 is associated with poor prognosis in breast cancer patients and promotes cancer stemness. *Breast Cancer Res. Treat.* 2018, 170, 507–516.

26. Basak, P.; Chatterjee, S.; Bhat, V.; Su, A.; Jin, H.; Lee-Wing, V.; Liu, Q.; Hu, P.; Murphy, L.C.; Raouf, A. Long non-coding RNA H19 acts as an estrogen receptor modulator that is required for

endocrine therapy resistance in ER+ breast cancer cells. *Cell Physiol. Biochem.* 2018, 51, 1518–1532.

27. Zhu, Q.N.; Wang, G.; Guo, Y.; Peng, Y.; Zhang, R.; Deng, J.L.; Li, Z.X.; Zhu, Y.S. LncRNA H19 is a major mediator of doxorubicin chemoresistance in breast cancer cells through a cullin4A-MDR1 pathway. *Oncotarget* 2017, 8, 91990–92003.

28. Zheng, R.; Lin, S.; Guan, L.; Yuan, H.; Liu, K.; Liu, C.; Ye, W.; Liao, Y.; Jia, J.; Zhang, R. Long non-coding RNA XIST inhibited breast cancer cell growth, migration, and invasion via miR-155/CDX1 axis. *Biochem Biophys Res. Commun.* 2018, 498, 1002–1008.

29. Meijer, D.; van Agthoven, T.; Bosma, P.T.; Nooter, K.; Dorssers, L.C. Functional screen for genes responsible for tamoxifen resistance in human breast cancer cells. *Mol. Cancer Res.* 2006, 4, 379–386.

30. Godinho, M.; Meijer, D.; Setyono-Han, B.; Dorssers, L.C.; van Agthoven, T. Characterization of BCAR4, a novel oncogene causing endocrine resistance in human breast cancer cells. *J. Cell Physiol.* 2011, 226, 1741–1749.

31. Li, F.; Zou, Z.; Suo, N.; Zhang, Z.; Wan, F.; Zhong, G.; Qu, Y.; Ntaka, K.S.; Tian, H. CCL21/CCR7 axis activating chemotaxis accompanied with epithelial–mesenchymal transition in human breast carcinoma. *Med Oncol.* 2014, 31, 180, doi:10.1007/s12032-014-0180-8.

32. Xu, Z.; Liu, C.; Zhao, Q.; Lü, J.; Ding, X.; Luo, A.; He, J.; Wang, G.; Li, Y.; Cai, Z.; et al. Long non-coding RNA CCAT2 promotes oncogenesis in triple-negative breast cancer by regulating stemness of cancer cells. *Pharmacol. Res.* 2020, 152, 104628, doi:10.1016/j.phrs.2020.104628.

33. Xu, C.G.; Yang, M.F.; Ren, Y.Q.; Wu, C.H.; Wang, L.Q. Exosomes mediated transfer of lncRNA UCA1 results in increased tamoxifen resistance in breast cancer cells. *Eur. Rev. Med. Pharmacol. Sci.* 2016, 20, 4362–4368.

34. Campos-Parra, A.D.; López-Urrutia, E.; Moreno, L.T.O.; López-Camarillo, C.; Menchaca, T.M.; González, G.F.; Montes, L.P.B.; Pérez-Plasencia, C. Long non-coding RNAs as new master regulators of resistance to systemic treatments in breast cancer. *Int. J. Mol. Sci.* 2018, 19, 2711, doi:10.3390/ijms19092711.

35. Li, Z.; Xu, L.; Liu, Y.; Fu, S.; Tu, J.; Hu, Y.; Xiong, Q. LncRNA MALAT1 promotes relapse of breast cancer patients with postoperative fever. *Am. J. Transl. Res.* 2018, 10, 3186–3197.

36. Chen, Q.; Zhu, C.; Jin, Y. The Oncogenic and Tumor Suppressive Functions of the Long Noncoding RNA MALAT1: An Emerging Controversy. *Front. Genet.* 2020, 11, 93, doi:10.3389/fgene.2020.00093.

37. Kim, J.; Piao, H.L.; Kim, B.J.; Yao, F.; Han, Z.; Wang, Y.; Xiao, Z.; Siverly, A.N.; Lawhon, S.E.; Ton, B.N.; Lee, H.; Zhou, Z.; Gan, B.; Nakagawa, S.; Ellis, M.J.; Liang, H.; Hung, M.C.; You, M.J.;

Sun, Y.; Ma, L. Long noncoding RNA MALAT1 suppresses breast cancer metastasis. *Nat. Genet.* 2018, 50, 1705–1715.

38. Zhang, M.; Wu, W.B.; Wang, Z.W.; Wang, X.H. lncRNA NEAT1 is closely related with progression of breast cancer via promoting proliferation and EMT. *Eur. Rev. Med. Pharmacol. Sci.* 2017, 21, 1020–1026.

39. Li, W.; Zhang, Z.; Liu, X.; Cheng, X.; Zhang, Y.; Han, X.; Zhang, Y.; Liu, S.; Yang, J.; Xu, B.; He, L.; Sun, L.; Liang, J.; Shang, Y. The FOXN3-NEAT1-SIN3A repressor complex promotes progression of hormonally responsive breast cancer. *J. Clin. Invest.* 2017, 127, 3421–3440.

40. Shi, S.J.; Wang, L.J.; Yu, B.; Li, Y.H.; Jin, Y.; Bai, X.Z. lncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. *Oncotarget* 2015, 6, 11652–11663.

41. Dong, H.; Hu, J.; Zou, K.; Ye, M.; Chen, Y.; Wu, C.; Chen, X.; Han, M. Activation of lncRNA TINCR by H3K27 acetylation promotes Trastuzumab resistance and epithelial-mesenchymal transition by targeting MicroRNA-125b in breast Cancer. *Mol. Cancer.* 2019, 18, 1–18.

42. Zhu, H.Y.; Bai, W.D.; Ye, X.M.; Yang, A.G.; Jia, L.T. Long non-coding RNA UCA1 desensitizes breast cancer cells to trastuzumab by impeding miR-18a repression of Yes-associated protein B1. *Biochem. Biophys. Res. Commun.* 2018, 496, 1308–1313.

43. Dong, H.; Wang, W.; Mo, S.; Chen, R.; Zou, K.; Han, J.; Zhang, F.; Hu, J. SP1-induced lncRNA AGAP2-AS1 expression promotes chemoresistance of breast cancer by epigenetic regulation of MyDJ88. *J. Exp. Clin. Cancer Res.* 2018, 37, 1–15.

44. Li, W.; Zhai, L.; Wang, H.; Liu, C.; Zhang, J.; Chen, W.; Wei, Q. Downregulation of lncRNA GAS5 causes trastuzumab resistance in breast cancer. *Oncotarget* 2016, 7, 27778–27786.

45. Zhang, H.Y.; Liang, F.; Zhang, J.W.; Wang, F.; Wang, L.; Kang, X.G. Effects of long noncoding RNA-ROR on tamoxifen resistance of breast cancer cells by regulating microRNA-C205. *Cancer Chemother. Pharmacol.* 2017, 79, 327–337.

46. Zhang, C.H.; Wang, J.; Zhang, L.X.; Lu, Y.H.; Ji, T.H.; Xu, L.; Ling, L.J. Shikonin reduces tamoxifen resistance through long non-coding RNA uc.57. *Oncotarget* 2017, 8, 88658–88669.

47. Ma, T.; Liang, Y.; Li, Y.; Song, X.; Zhang, N.; Li, X.; Chen, B.; Zhao, W.; Wang, L.; Yang, Q. lncRNA LINP1 confers tamoxifen resistance and negatively regulated by ER signaling in breast cancer. *Cell. Signal.* 2020, 68, 109536.

48. Niknafs, Y.S.; Han, S.; Ma, T.; Speers, C.; Zhang, C.; Wilder-Romans, K.; Iyer, M.K.; Pitchiaya, S.; Malik, R.; Hosono, Y.; et al. The lncRNA landscape of breast cancer reveals a role for DSCAM-AS1 in breast cancer progression. *Nat. Commun.* 2016, 7, 1–13.

49. Shi, Y.F.; Lu, H.; Wang, H.B. Downregulated lncRNA ADAMTS9-AS2 in breast cancer enhances tamoxifen resistance by activating microRNA-130a-5p. *Eur. Rev. Med. Pharmacol. Sci.* 2019, 23,

1563–1573.

50. Liu, Y.; Li, M.; Yu, H.; Piao, H. lncRNA CYTOR promotes tamoxifen resistance in breast cancer cells via sponging miR-125a-5p. *Int. J. Mol. Med.* 2020, 45, 497–509.

51. Gu, J.; Wang, Y.; Wang, X.; Zhou, D.; Shao, C.; Zhou, M.; He, Z. Downregulation of lncRNA GAS5 confers tamoxifen resistance by activating miR-222 in breast cancer. *Cancer Lett.* 2018, 434, 1–10.

52. Rinn, J.L.; Kertesz, M.; Wang, J.K.; Squazzo, S.L.; Xu, X.; Brugmann, S.A.; Goodnough, L.H.; Helms, J.A.; Farnham, P.J.; Segal, E.; Chang, H.Y. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. *Cell* 2007, 129, 1311–1323.

53. Bhan, A.; Mandal, S.S. lncRNA HOTAIR: A master regulator of chromatin dynamics and cancer. *Biochim. Biophys. Acta.* 2015, 1856, 151–164.

54. Majello, B.; Gorini, F.; Saccà, C.D.; Amenta, S. Expanding the role of the histone lysine-specific demethylase LSD1 in cancer. *Cancers* 2019, 11, 324.

55. Chu, C.; Qu, K.; Zhong, F.L.; Artandi, S.E.; Chang, H.Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. *Mol. Cell.* 2011, 44, 667–678.

56. Yoon, J.H.; Abdelmohsen, K.; Kim, J.; Yang, X.; Martindale, J.L.; Tominaga-Yamanaka, K.; White, E.J.; Orjalo, A.V.; Rinn, J.L.; Kreft, S.G.; Wilson, G.M.; Gorospe, M. Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. *Nat. Commun.* 2013, 4, 1–14.

57. Paraskevopoulou, M.D.; Vlachos, I.S.; Karagkouni, D.; Georgakilas, G.; Kanellos, I.; Vergoulis, T.; Zagganas, K.; Tsanakas, P.; Floros, E.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-LncBase v2: Indexing microRNA targets on non-coding transcripts. *Nucleic Acids Res.* 2016, 44, D231–D238.

58. Ding, W.; Ren, J.; Ren, H.; Wang, D. Long Noncoding RNA HOTAIR Modulates MiR-206-mediated Bcl-w Signaling to Facilitate Cell Proliferation in Breast Cancer. *Sci. Rep.* 2017, 7, 1–9.

59. Han, B.; Peng, X.; Cheng, D.; Zhu, Y.; Du, J.; Li, J.; Yu, X. Delphinidin suppresses breast carcinogenesis through the HOTAIR/microRNA-34a axis. *Cancer Sci.* 2019, 110, 3089–3097.

60. Liu, M., Zhang, H., Li, Y., Wang, R., Li, Y., Zhang, H., Ren, D., Liu, H., Kang, C., Chen, J. HOTAIR, a long noncoding RNA, is a marker of abnormal cell cycle regulation in lung cancer. *Cancer Sci.* 2018, 109, 2717–2733.

61. Xu, S.; Kong, D.; Chen, Q.; Ping, Y.; Pang, D. Oncogenic long noncoding RNA landscape in breast cancer. *Mol. Cancer* 2017, 16, 129, doi:10.1186/s12943-017-0696-6.

62. Botti, G.; Collina, F.; Scognamiglio, G.; Aquino, G.; Cerrone, M.; Liguori, G.; Gigantino, V.; Malzone, M.G.; Cantile, M. LncRNA HOTAIR Polymorphisms Association with Cancer Susceptibility in Different Tumor Types. *Curr. Drug Targets*. 2018, 19, 1220–1226.

63. Zhang, A.; Zhao, J.C.; Kim, J.; Fong, K.W.; Yang, Y.A.; Chakravarti, D.; Mo, Y.Y.; Yu, J. LncRNA HOTAIR Enhances the Androgen-Receptor-Mediated Transcriptional Program and Drives Castration-Resistant Prostate Cancer. *Cell. Rep.* 2015, 13, 209–221.

64. Yan, T.H.; Lu, S.W.; Huang, Y.Q.; Que, G.B.; Chen, J.H.; Chen, Y.P.; Zhang, H.B.; Liang, X.L.; Jiang, J.H. Upregulation of the long noncoding RNA HOTAIR predicts recurrence in stage Ta/T1 bladder cancer. *Tumour Biol.* 2014, 35, 10249–10257.

65. Shang, C.; Guo, Y.; Zhang, H.; Xue, Y.X. Long noncoding RNA HOTAIR is a prognostic biomarker and inhibits chemosensitivity to doxorubicin in bladder transitional cell carcinoma. *Cancer Chemother. Pharmacol.* 2016, 77, 507–513.

66. Berrondo, C.; Flax, J.; Kucherov, V.; Siebert, A.; Osinski, T.; Rosenberg, A.; Fucile, C.; Richheimer, S.; Beckham, C.J. Expression of the Long Non-Coding RNA HOTAIR Correlates with Disease Progression in Bladder Cancer and Is Contained in Bladder Cancer Patient Urinary Exosomes. *PLoS ONE*. 2016, 11, e0147236.

67. Qiu, J.J.; Lin, Y.Y.; Ye, L.C.; Ding, J.X.; Feng, W.W.; Jin, H.Y.; Zhang, Y.; Li, Q.; Hua, K.Q. Overexpression of long non-coding RNA HOTAIR predicts poor patient prognosis and promotes tumor metastasis in epithelial ovarian cancer. *Gynecol. Oncol.* 2014, 134, 121–128.

68. Huang, L.; Liao, L.M.; Liu, A.W.; Wu, J.B.; Cheng, X.L.; Lin, J.X.; Zheng, M. Overexpression of long noncoding RNA HOTAIR predicts a poor prognosis in patients with cervical cancer. *Arch. Gynecol. Obstet.* 2014, 290, 717–723.

69. Liu, M.; Jia, J.; Wang, X.; Liu, Y.; Wang, C.; Fan, R. Long non-coding RNA HOTAIR promotes cervical cancer progression through regulating BCL2 via targeting miR-143-3p. *Cancer Biol. Ther.* 2018, 19, 391–399.

70. Li, J.; Wang, Y.; Yu, J.; Dong, R.; Qiu, H. A high level of circulating HOTAIR is associated with progression and poor prognosis of cervical cancer. *Tumour Biol.* 2015, 36, 1661–1665.

71. He, X.; Bao, W.; Li, X.; Chen, Z.; Che, Q.; Wang, H.; Wan, X.P. The long non-coding RNA HOTAIR is upregulated in endometrial carcinoma and correlates with poor prognosis. *Int. J. Mol. Med.* 2014, 33, 325–332.

72. Sun, M.Y.; Zhu, J.Y.; Zhang, C.Y.; Zhang, M.; Song, Y.N.; Rahman, K.; Zhang, L.J.; Zhang, H. Autophagy regulated by lncRNA HOTAIR contributes to the cisplatin-induced resistance in endometrial cancer cells. *Biotechnol. Lett.* 2017, 39, 1477–1484.

73. Luo, Z.F.; Zhao, D.; Li, X.Q.; Cui, Y.X.; Ma, N.; Lu, C.X.; Liu, M.Y.; Zhou, Y. Clinical significance of HOTAIR expression in colon cancer. *World J. Gastroenterol.* 2016, 22, 5254–5259.

74. Zhao, W.; Dong, S.; Duan, B.; Chen, P.; Shi, L.; Gao, H.; Qi, H. HOTAIR is a predictive and prognostic biomarker for patients with advanced gastric adenocarcinoma receiving fluorouracil and platinum combination chemotherapy. *Am. J. Transl. Res.* 2015, 7, 1295–1302.

75. Ishibashi, M.; Kogo, R.; Shibata, K.; Sawada, G.; Takahashi, Y.; Kurashige, J.; Akiyoshi, S.; Sasaki, S.; Iwaya, T.; Sudo, T.; Sugimachi, K.; Mimori, K.; Wakabayashi, G.; Mori, M. Clinical significance of the expression of long non-coding RNA HOTAIR in primary hepatocellular carcinoma. *Oncol. Rep.* 2013, 29, 946–950.

76. Yang, Z.; Zhou, L.; Wu, L.M.; Lai, M.C.; Xie, H.Y.; Zhang, F.; Zheng, S.S. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. *Ann. Surg. Oncol.* 2011, 18, 1243–1250.

77. Li, D.; Feng, J.; Wu, T.; Wang, Y.; Sun, Y.; Ren, J.; Liu, M. Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. *Am. J. Pathol.* 2013, 182, 64–70.

78. Zheng, J.; Xiao, X.; Wu, C.; Huang, J.; Zhang, Y.; Xie, M.; Zhang, M.; Zhou, L. The role of long non-coding RNA HOTAIR in the progression and development of laryngeal squamous cell carcinoma interacting with EZH2. *Acta. Otolaryngol.* 2017, 137, 90–98.

79. Nakagawa, T.; Endo, H.; Yokoyama, M.; Abe, J.; Tamai, K.; Tanaka, N.; Sato, I.; Takahashi, S.; Kondo, T.; Satoh, K. Large noncoding RNA HOTAIR enhances aggressive biological behavior and is associated with short disease-free survival in human non-small cell lung cancer. *Biochem. Biophys. Res. Commun.* 2013, 436, 319–324.

80. Liu, M.Y.; Li, X.Q.; Gao, T.H.; Cui, Y.; Ma, N.; Zhou, Y.; Zhang, G.J. Elevated HOTAIR expression associated with cisplatin resistance in non-small cell lung cancer patients. *J. Thorac. Dis.* 2016, 8, 3314–3322.

81. Li, N.; Wang, Y.; Liu, X.; Luo, P.; Jing, W.; Zhu, M.; Tu, J. Identification of Circulating Long Noncoding RNA HOTAIR as a Novel Biomarker for Diagnosis and Monitoring of Non-Small Cell Lung Cancer. *Technol. Cancer Res. Treat.* 2017, 16, 1060–1066.

82. Botti, G.; Scognamiglio, G.; Aquino, G.; Liguori, G.; Cantile, M. LncRNA HOTAIR in Tumor Microenvironment: What Role? *Int. J. Mol. Sci.* 2019, 20, 2279.

Retrieved from <https://encyclopedia.pub/entry/history/show/6604>