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Infectious and many non-infectious diseases share common molecular mechanisms. Among them, oxidative stress
and the subsequent inflammatory reaction are of particular note. Metabolic disorders induced by external agents,
be they bacterial or viral pathogens, excessive calorie intake, poor-quality nutrients, or environmental factors
produce an imbalance between the production of free radicals and endogenous antioxidant systems; the
consequence being the oxidation of lipids, proteins, and nucleic acids. Oxidation and inflammation are closely
related, and whether oxidative stress and inflammation represent the causes or consequences of cellular
pathology, both produce metabolic alterations that influence the pathogenesis of the disease. In this entry, authors
highlight two key molecules in the regulation of these processes: Paraoxonase-1 (PON1) and chemokine (C-C
motif) ligand 2 (CCL2).
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| 1. Oxidation, Inflammation and Disease

Tissues produce reactive oxygen species (ROS) as a metabolic by-product in response to environmental factors
such as an imbalanced diet or an infectious process. ROS react with lipids, proteins, and nucleic acids and result in
alterations in cell structure and function . The organism has enzymatic and non-enzymatic antioxidants to block
the harmful effects of ROS. However, these protective systems can be overwhelmed in disease states. An
inflammatory reaction is generated when oxidative equilibrium is disrupted. For example, in infectious diseases,
ROS production by host macrophages is an important part of the defense mechanism against infecting bacteria or
viruses, and the imbalances produced can trigger an inflammatory reaction [, In turn, inflammation can lead to a
further increase in oxidative stress and thus enter a vicious cycle that can aggravate the disease (=4,
Independently of whether oxidative stress and inflammation represent the causes or the consequences of cellular
alterations, an overwhelming amount of evidence indicates that both processes contribute to the pathogenesis of
many diseases. The role played by macrophages and their polarization need to be considered in detail in the
setting of chronic inflammatory diseases 2. These diseases are associated with an increase in M1, or “classically
activated” macrophages, and a decrease in M2, or “alternatively activated” macrophages EIZEl Chemokines are
involved in macrophage polarization, while directing the traffic of immune cells to sites of inflammation and
activating the production and secretion of inflammatory cytokines [&l. Monocytes migrate to the site of inflammation
and differentiate into macrophages when the chemokine (C-C motif) receptor (CCR2) interacts with the chemokine

(C-C motif) ligand 2 (CCL2): a key process in the development of inflammatory diseases [19. Recent studies
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indicate that other chemokines and chemokine receptors also play important roles. For example, the CCL5/CCR5

complex has been related to cancer and infection [L1[12][13]14]

2. The Protective Role of Paraoxonases on CCL2 Expression,
Mitochondrial Function, and Metabolism

Several lines of research suggest that the PON family of enzymes play a prominent role in the protection of cells
against mitochondrial dysfunction and metabolic alterations. Most studies in this field have been conducted on
PON2 because the general consensus is that this is the major intracellular enzyme. For example, PON2 has been
reported to reduce the unfolded protein response (UPR) accompanying oxidative stress and UPR-derived caspase
activation in human vascular cells 23181171 |n addition, the expression of genes related to endoplasmic reticulum
stress was increased in macrophages from apolipoprotein E and PONZ2 double deficient mice, compared to those
that were only apolipoprotein E -deficient 18, These authors observed that treatment of macrophages from
apolipoprotein E and PONZ2 double deficient mice with an inducer of endoplasmic reticulum stress resulted in
mitochondrial dysfunction, increased oxidative stress, and increased cell apoptosis. Further studies in several

experimental models have added more evidence that PON2 protects mitochondrial function and prevents
apoptosis [22120]121]

From the above-mentioned data, it is inferred that PON2 does indeed play a protective role in mitochondrial
function, but this is not so clear regarding PON1. Data suggest that this enzyme also protects cells from oxidation,
and that this effect involves the inhibition of CCL2 synthesis. Studies from our research group have shown that
PON1 deficient mice fed an atherogenic diet had increased hepatic fat depots and a marked depression of the
tricarboxylic acid (TCA) cycle. In addition, the hepatic concentrations of several markers of oxidative stress and
CCL2 expression were increased 22, Further experimental data (23] showed that dietary fat caused liver steatosis,
oxidative stress, and the accumulation of pro-inflammatory macrophages in the livers of LDL-receptor and PON1
double deficient mice, together with alterations in energy metabolism, in the methionine cycle, in the glutathione
reduction pathway, and autophagy. Conversely, when we established a line of LDL-receptor, PON1, and CCL2
triple deficient mice, we observed that the deletion of this chemokine normalized the metabolic disturbances and
increased lysosome-associated membrane protein 2 expression, which suggests enhanced chaperone-mediated
autophagy. In humans, studies have observed that individuals with obesity have impaired PON1 activity and
impaired mitochondrial function 2423 Our group has a special interest in evaluating the hepatic alterations in
patients with morbid obesity treated with bariatric surgery and, as well, in observing the metabolic effects of the
treatment. To date, results have shown that one-year post-surgery, the hepatic histology of all patients was
improved, especially in those who had severe steatohepatitis, bridging fibrosis, and/or cirrhosis. Additionally, we
observed pre-surgery differences in plasma and liver markers of oxidative stress and inflammation (including CCL2
and PON1), which were corrected one-year post-surgery 28, In addition, patients with steatohepatitis presented
pre-surgery alterations in energy metabolism, especially in plasma concentrations of a-ketoglutarate and

oxaloacetate, which reverted one-year post-surgery 2. Overall, these results suggest an entanglement of PON1
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and CCL2 in the regulation of metabolism and mitochondrial function in the liver of experimental animals, and in

humans (Figure 1).
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Figure 1. Oxidation, inflammation, and disturbances in energy metabolism are closely related. To date, the
evidence reported suggests that excessive production of reactive oxygen species (ROS) would inhibit
paraoxonase-1 (PON1) activity in high-density lipoprotein (HDL) particles and in the mitochondrial membranes of
somatic cells. At the same time, it would stimulate the synthesis of chemokine (C-C motif) ligand 2 (CCL2) through
several pathways, notably that of pathogen-associated molecular patterns/damage-associated molecular
patterns/pattern-recognition receptors (PAMP/DAMP/PRR). The decrease in PONL1 activity and the increase in
CCI2 would cause alterations in mitochondrial metabolism and an inhibition of autophagy. At the same time, CCL2
would interact with its receptor (CRR2) and present on monocytes, promoting their migration to sites of injury, their
differentiation to macrophages, and their synthesis of new ROS, producing a vicious circle that would trigger and

aggravate the disease.
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3. Mechanism of Action of CCL2 in the Immune Response
and Inflammation and Its Relationship with Multiple
Metabolic Alterations

One of the proposed mechanisms by which oxidative stress would enhance the inflammatory response is the
induction and assembly of multiprotein complexes called inflammasomes. ROS activate the NOD-like receptor
Pyrin domain 3 (NLRP3) in macrophages, triggering the formation of inflammasomes and an immune reaction that
involves the synthesis of pro-inflammatory chemokines, from which CCL2 is, probably, the most representative 28]
(29130181 This chemokine is upregulated following tissue injury and is expressed by both inflammatory and stromal
cells. CCL2 has been reported to promote endoplasmic reticulum (ER) stress and autophagy and to regulate NF-
KB expression by catalyzing de-ubiquitination B2, The main pathway triggering inflammation is, probably, the
activation of pattern-recognition receptors (PRRs), which recognize pathogen-associated molecular patterns
(PAMPSs), synthesized as a response to pathogens, or damage-associated molecular patterns (DAMPS), which are
products of damaged cells B3I3433] The binding of PAMP/DAMP to a PRR leads to NF-kB activation and the
production of adhesion molecules and chemokines that lead to infiltration of immune cells into the sites of tissue
damage [28l. Other alternative pathways also result in similar outcomes, particularly the phosphoinositide 3-kinase-
related signaling pathway, the mitogen-activated protein kinase pathway, and the Janus kinase/signal transducers
and activators of transcription signaling pathway 7381391 These changes induce the UPR, essentially by three
ER-related transmembrane proteins, i.e., the inositol-requiring enzyme 1, the protein kinase RNA-like endoplasmic
reticulum kinase, and the activating transcription factor 6 4941421431 CCL2 and other chemokines, together with
oxidative stress, trigger ER stress. In addition, the UPR may regulate inflammation through several pathways, such
as the regulation of oxidative stress or the upregulation of CCR2 expression #4]: the UPR links ER stress with cell
death and autophagy 42!, When cell damage is moderate, autophagy helps cells survive the injury, allowing them
to heal and thus preventing cell death by removing toxic protein aggregates. However, when cell damage is high,
the result is a non-apoptotic form of cell death that can be detrimental. The role of autophagy in the maintenance of
mitochondrial integrity seems to be paramount 48, Mitophagy increases cell lifespan, while repression of
autophagy reduces lifespan. Several studies have linked mitochondrial dysfunction, autophagy, and age-related
diseases with the activity of the inflammasomes 44484250 Taken together, these results define a clear
relationship between oxidative stress, chemokines, and mitochondrial impairment, resulting in metabolic alterations

and their involvement in diseases.

Activation of the immune response and chronic inflammation has been associated with aging and age-related
diseases BUB2B3 Senescent cells secrete chemokines, which influence the trafficking of immune cells 453!,
Epidemiological studies have suggested that CCL2 levels are increased in older individuals, independently of
metabolic alterations. Moreover, in vitro studies have shown that chemokines appear to confer senescence to
neighboring normal cells in an autocrine and paracrine fashion B8IBAEE] A recent study by our research group in
mice with accelerated aging is a good example of such relationships 2. We crossbred mice that overexpressed
CCL2 with progeroid mice bearing a mutation in the lamin A gene. Wild-type animals and progeroid mice not
overexpressing CCL2 were used as controls. We observed that progeroid mice lost weight (relative to the wild-type

animals) and developed lordokyphosis and lipodystrophy. The lifespan was significantly reduced in both strains of
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progeroid mice, but this reduction was higher in those overexpressing CCL2. These mice also presented specific
characteristics of metabolic dysregulation in skeletal muscle, including alterations in the glucose and TCA cycles,
and in one-carbon metabolism. These data suggest that mitochondrial metabolites play major roles in pathological
aging. Consequently, we investigated the mitochondrial respiratory complexes in skeletal muscle, and observed
that the expressions of complexes | and V were lower in mice overexpressing CCL2. In addition, the protein
concentrations of translocase of outer membrane 20 (TOM20) and mitofusin 2 (MFN2) in the muscles of the
progeroid mice were decreased, indicating alterations in the correct formation of the mitochondrial network. We
also observed an increase in p53, which would indicate the triggering of aging through a p53-mediated
transcriptional program involving the mechanistic target of rapamycin. Indeed, we found inhibition of
phosphorylation of phosphoinositide 3-kinase, indicating a mechanistic target of rapamycin inhibition. Finally, the
higher microtubule-associated proteins 1A/1B light chain 3B (LC3) Il/I ratio, and lower lysosome-associated
membrane protein 2 (LAMP2A) and sequestosome 1 (p62) expressions suggested the involvement of chaperone-

mediated autophagy as a consequence of the CCL2 overexpression in the progeroid animals.

Following on from the actions described above, in many infectious and non-infectious diseases, the adaptive
immunity deteriorates, whereas the innate immunity is more responsive to stimuli; the consequence is the
development of an inflammatory reaction. Several studies have linked the activation of NLRP3, which is dependent
on increased generation of free radical species by mitochondria, with metabolic disturbances U612 Hence, it is
of note that awareness of the origin of free radicals and the putative mechanisms of prevention (i.e., PON1) is
critical when establishing possible therapeutic interventions in order to preempt an inflammatory reaction. Within

this context, the interaction of PON1 with CCL2 can play a key role.
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