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Blood flow modeling consists of using computational techniques to investigate the blood flow behavior in a rapid
and accurate fashion. This has become an area of extensive research due to the prevalence of cardiovascular
diseases, responsible for a critical number of deaths every year worldwide, most of which are associated with
atherosclerosis, a disease that causes unusual hemodynamic conditions in arteries. In the present review, the
application of computational simulations by using different physiological conditions of blood flow, several

rheological models, and boundary conditions, were discussed.

atherosclerosis coronary arteries hemodynamics numerical methods

| 1. Introduction

Despite the progress done in experimental studies and blood flow measurement techniques, there are still some
challenges associated with themll. For instance, in vitro wall shear stress (WSS) measurements are extremely
difficult to perform and the velocity measurements have high associated errors. These, combined with other
complications of directly measuring quantities of interest, have motivated the use of computer simulations to predict

them in silicol2l.

The earliest numerical detailed studies solving the flow problem in constricted tubes were conducted by Lee and
Fung (1970)El. After that, other studies in this field conducted by Caro et al., (1971)4], Glagov et al., (1989)&], and
Ku et al., (1985)1! are important references in this area and should be highlighted. Ever since, CFD approaches
have been progressively adopted by most researchers as the preferred technique for numerical modeling of
hemodynamics. Owing to the continued growth of computational power, these have become an increasingly
reliable tool for measuring biomechanical factors vital for clinical decision-making and surgical planning. However,
the proper selection of the flow boundary conditions has to be done, otherwise, the findings can be considered
uncertain, weak, and unrealistic. In this regard, the different geometries, boundary conditions, and flow

characteristics applied by some researchers in the last ten years are summarized in Table 1.

Table 1. Numerical studies of hemodynamics and the respective assumptions for numerical simulations.
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requiring much computational time and without the need to collect the medical images, which is highly time-

consuming. In this regard, a promising study was proposed by Doutel et al., (2018) wherein artificial, but realistic

stenosis can be generated.

It was also noted that, although the modelling of blood as a Newtonian fluid is a good approximation for large

vessels with high shear rates, the assumption of non-Newtonian behavior of blood flow has been increasingly used
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protiles more adequate to study the blood flow behavior in coronary arteries.
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However, blood is a mixture of plasma, red blood cells, white blood cells, and platelets. Therefore, the
consideration of multiphase models is of great importance when modeling atherosclerotic lesions. Although some
studies have already applied these models , the research is still in the beginning. Moreover, it should be also noted
that the use of these models is a promising option for studying nanoparticle-mediated targeted drug delivery
treatment of atherosclerosis. In this context, a promising study was conducted by Zhang et al., (2020). The authors
used an Eulerian-Lagrangian approach coupled with FSI to investigate the impact of plaque morphology on

magnetic nanoparticles targeting under the action of an external field.

Due to the continuous improvements acquired in computational methods, in the following years more amazing and
complex hemodynamic studies will be performed. The work of Zhao et al. (2019) should be highlighted since their
numerical approach has a great potential to achieve more realistic simulations. They have simulated 4D
hemodynamic profiles of time-resolved blood flow. The results proved that these simulations can provide extensive
information about blood flow, both qualitatively and quantitatively that may be advantageous for future

investigations of clinical diagnosis and treatment of atherosclerosis.

To conclude, although computational methods have been extensively used for atherosclerosis investigations in
recent years, they are expected to become more popular and more effective to simulate the blood flow in the
cardiovascular system, and consequently, they will promote medical innovation at an affordable cost. However, to
this end, active collaborations between engineers and medical staff are needed to assure the successful

application of this technique in atherosclerosis treatment.
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