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Alignment-free (AF) methodologies have increased in popularity in the last decades as alternative tools to alignment-

based (AB) algorithms for performing comparative sequence analyses. They have been especially useful to detect remote

homologs within the twilight zone of highly diverse gene/protein families and superfamilies. The most popular alignment-

free methodologies, as well as their applications to classification problems, have been described in previous reviews.

Despite a new set of graph theory-derived sequence/structural descriptors that have been gaining relevance in the

detection of remote homology, they have been omitted as AF predictors when the topic is addressed. Here, we first go

over the most popular AF approaches used for detecting homology signals within the twilight zone and then bring out the

state-of-the-art tools encoding graph theory-derived sequence/structure descriptors and their success for identifying

remote homologs.
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We compile the most popular alignment-free methods applied to the detection of homologous sequences within the

twilight zone of alignment algorithms. Such homologous proteins placed at this zone or beyond are known as remote

homologs.

1. Word Frequency-Based Methods

The most popular AF approaches are based on word frequency counting, known as word-based methods. They estimate

how many times a letter from the DNA or protein alphabets appears along the query sequence, or alternatively, they can

also count the occurrences of certain subsequence of length k, where k size must be smaller than the query sequence

length. Thus, they encompass those AF methods based on nucleotide , amino acid  and pseudo compositions , and

others related to subsequence frequencies like k-mers or k-words , spaced k-words  and k-tuples . They all have

been applied up to certain extent in database searching, gene annotation, comparative genomics and phylogenetics by

using AF similarity measures, to cope with the previously mentioned alignment’s handicaps. For example, amino acid

composition (ACC) was implemented in a webserver named Composition based Protein identification (COPid) to perform

protein searches and phylogenetic analysis by means of AF distances https://webs.iiitd.edu.in/raghava/COPid/ ; but also

has been applied to detect remote homology in the G-protein coupled receptor superfamily (GPCR) . The GPCR family

has represented a challenging target, due to its high sequence diversity, for studying the prediction performance of

several AF tools  including the pseudo amino acid composition (PseAAC) protein feature .

The Chou’s PseAAC concept was firstly applied to predict protein cellular attributes related to the biological function

regardless alignment information . This AF approach incorporated the sequence order effect to the ACC to improve the

quality of predictions. It was implemented in a webserver hosted at http://www.csbio.sjtu.edu.cn/bioinf/PseAA/ . The

performance of PseACC has been evaluated in the twilight zone by (i) identifying enzymatic signatures and delimiting their

subclasses in a non-redundant subset of enzymes and non-enzymes sharing sequence similarities lower than 40% of

identity  (ii) classifying structurally characterized proteins sharing < 30% of similarity into the four SCOPe’ classes (α, β,

α/β, α + β) just having sequence primary information  and (iii) detecting remote protein homologous using benchmark

datasets . In addition to the proven utility of other compositional AF features like k-mers in assembling reads from NGS

technologies into contigs , identification of species in metagenomic samples  and improving heterologous gene

expression ; they have been applied to overcome several handicaps found in the twilight zone such as (i) the

annotation of protein families within the metagenome’s diversity , (ii) the classification of structural protein classes in

designed datasets sharing low sequence similarities just by using k-word frequencies or AF distances , or by k-mers

incorporation into the general scheme of PseACC , and (iii) the phylogeny reconstruction for constantly-evolving viral

genomes by the estimation of alignment-free distances 

Popular AF methods based on compositional features have been also applied to genome or proteome-based phylogeny

reconstructions  because they circumvent some well-known problems arising when intending the alignment of large

genomic sequences, finding orthologs to build species trees and dealing with low homology genes/proteins ; instead
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they can estimate directly AF distances from unassembled Next Generation Sequencing (NGS) reads for phylogenetic

tree building .

Last but not least, many of the previously-mentioned word-based methods, have been also exploited to detect, analyze

and compare the less conserved blocks of the genomes made up by regulatory regions including promoters, transcription

factors and enhancers . In this sense, the D2z AF measure derived from k-words frequencies highlights as one of the

first reports in detecting functional and/or evolutionary similarities among cis-regulatory modules (CRMs) from several

tissues of human’s and Drosophila’s genomic sequences . One year later, k-words distributions were added directly to

Markov models to define new AF similarity measures to discriminate functionally related CRMs from the unrelated ones

. In 2010, the concept of Regulatory Region Scoring (RRS), based on the potential distribution of the transcription

factors in CRMs, was introduced as an AF prediction model for the detection of related functional signals in non-alignable

enhancers found in the CRMs; but could also be extended to other regulatory sequences like promoters . More details

about the definition and application of the most popular AF methods and measures were addressed by Vinga and Almeida

in several outstanding reviews .

2. Information Theory-Based Methods

The runners up of most popular AF methods are those based on the information theory which measure the information

contained in the organization of DNA and protein strings using different approaches. For example, the Kolmogorov

complexity of a sequence is measured through the shortest description of its string. However, such abbreviated

description of the string is really expressed as a “compression” measure like the “.zip files”. As longer and more complex

is the sequence, a larger description would be needed and therefore less compression of its string would be possible to

apply . Another type of complexity information measure is the Lempel–Ziv complexity that calculates the number of

different substrings (occurrence rates) found along the sequence. The number of iterations needed to find such substring

occurrences is related with the complexity of the sequence . Once the Kolmogorov’s and Lempel–Ziv’s complexities are

determined for the sequences, the estimation of similarity or distance metrics can be easily computed . In this

sense, compression-based distance measures from Lempel–Ziv’s and Kolmogorov’s complexities were used to detect

distant protein similarities in a subset of the SCOP protein structure database , and to classify non-homologous

domains into the CATH levels (class, architecture, and topology) , respectively.

The so-called Universal Similarity Metric introduced by Li et al. 2001  lying on the Kolmogorov complexity concept

showed success to cluster protein structures sharing low sequence similarity within structural families and subfamilies .

Another theory-based measure is the Shannon entropy defined as the uncertainty of finding a given symbol (nucleotide or

amino acid) or word (L-tuples) in the analyzed sequence . The Shannon entropy concept has been used to estimate

Kullback–Leibler (KL) divergence measure that allowed the comparison of two sequences . The Shannon entropy

has been recently applied to relieve the perturbation caused by several biological processes such as mutations,

recombinations, insertions and deletions and fast-evolving genomes on pairwise effective genome comparisons .

AF methods based on the information theory have been also applied to characterize/compare regulatory sequences 

and to identify/compare transcription factor binding sites . For further details about the application of information

theory-based AF methods to non-coded sequence analysis, one may go through a comprehensive review published by

Vinga . At last, Table 1 shows a summary of the most popular AF methods applied to datasets of low sequence

similarity for remote homology detection and the clustering of similar protein structures under such conditions.

Table 1. Summary of the most popular AF features applied to detect remote homology
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