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Thymoquinone (TQ) is a bioactive molecule with anticancer as well as anti-inflammatory activities via the downregulation

of several chemokines and cytokines. Administering it as a nanoformulation increases its therapeutic value.
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1. Introduction

As per the WHO, approximately 80% of the global population utilizes indigenous systems of medicine for their primary

health care . Recently, various potential phytocandidates such as β-elemene, brazilin, bufalin, cardamonin,

cryptotanshinone, isogarcinol, curcumin, celastrol, lapachol, nobiletin, oroxylin A, thymoquinone, resveratrol, torilin, and

swertiamarin have been identified to have pharmacological properties . Thymoquinone (TQ) is a crucial active ingredient

obtained from the black seed of the plant Nigella sativa (NS) and Caram carvil, with potential antioxidant and anti-

inflammatory activities . It holds a wide range of other therapeutic properties, including hepatoprotective,

cardioprotective, anticancer, antidiabetic, and antimicrobial properties . Moreover, TQ also nullifies oxidative stress and

prevents any damage to the tissue or cellular environment .

The seeds of N. sativa contain a combination of volatile oils (0.40–0.45%), fixed oils (>30%, wt/wt) with two terpene

alkaloids and eight fatty acids. Dithymoquinone, TQ, trans-anethol, (2-isopropyl-5-methylbenzo-1, 4-quinone), limonine,

carvone, nigellidine, hedrin and p-cymene are some of the majorly identified terpenes. Moreover, the seeds also contain

isoquinoline (nigellicimine-N-oxide and nigellicimine) and indazole alkaloids (nigellicimine and nigellidine) . TQ exists in

tautomeric forms in which the keto fraction (~90%) majorly exerts pharmacological actions . The 2D and 3D structures of

TQ are depicted in Figure 1.

Figure 1. 2D and 3D structure of thymoquinone, C H O

TQ is a pharmacologically active agent used as a therapeutic agent as well as for preventive measures . Oral dosing of

Nigella sativa (NS) seeds at a quantity of 2 gm daily can effectively treat diabetes, as per reports . However, it is

associated with various pharmacokinetic issues that halt its pharmacodynamic activities. TQ is a hydrophobic molecule

with low aqueous solubility and is associated with thermal instability and photosensitivity , which makes it

systematically less bioavailable. Moreover, the bioavailability of TQ is mainly dependent upon its administration route. The

absolute bioavailability (BA) of TQ in rabbits after oral (20 mg/kg PO) and IV (5 mg/kg) administration revealed a *58% lag

time of 23 min with slower absorption and rapid elimination rates . It is an acidic molecule with a pKa value of 5.1 

that is extensively degraded in the aqueous medium, especially at higher pH concentrations . Low aqueous solubility,

bioavailability, thermal, and photodegradability are some major drawbacks in utilizing its maximum potential as

therapeutic.

Orally administered TQ is biotransformed into hydroquinone by DT-diaphorase (a quinine reductase enzyme) . Enzyme

glutathione and NADPH (nicotinamide adenine dinucleotide phosphate oxidase) quinine oxidoreductase converted it into

glutathionyl-dihydrothymoquinone and thymohydroquinone, respectively, via the redox mechanism . TQ catalyzes in a
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two-step one-electron reduction or a two-electron one-step reduction. In one-electron two-step reduction of TQ,

microsomal NADH cytochrome-b5 reductase, mitochondrial NADH ubiquinone oxidoreductase, and microsomal NADPH

cytochrome P450 reductase convert TQ into semiquinone, which is further biotransformed into thymohydroquinone .

Conversely, a one-step two-electron reduction directs the conversion of TQ into thymohydroquinone . Semiquinone of

TQ is also known to possess oxidative stress-producing capabilities in cancerous tissues. Superoxide anion produced via

oxidation can be nullified by TQ administration . Due to the lack of detoxifying enzymes, which is quite common in

cancer cells, the accumulated superoxide may exert the pro-oxidant effect of TQ . The physiological catalysis of TQ is

summarized in Figure 2.

Figure 2. Enzymatic catalytic pathway of TQ under physiological conditions.

2. Neoplasm and Its Pathogenesis

A large group of individuals are diagnosed with cancer annually, being the second leading cause of mortality worldwide

. Its pathogenesis is very complex and is often difficult to identify, and most of the time, it is multifactorial. The tendency

to multiply some groups of cells beyond their limit leads to abnormal development in a specific body part, which is called

neoplasm or cancer . Generally, metastasis-suppressor genes are involved in the inhibition of motility, invasiveness,

colony formation, growth arrest, differentiation, proliferation, adhesion to extracellular matrix components, cell-cell

adhesion and aggregation, and the immune sensitivity of cells . All of these tasks require precise timing, which is

controlled by a variety of cellular functions. Signaling, transcriptional activation, integrin expression, and signaling, cell

adhesion, and motility, cell communication, cytokine stress-induced signaling, serine protease expression, and nucleotide

diphosphate kinase activity are among these functions . Failing any of the above-said factors or group of factors may

initiate cancer genesis . Epigenetic changes also play a crucial role in disease initiation. Lower levels of H3K4me2,

H3K18ac, and H3K9me are linked to a poor prognosis in prostate, lung, and kidney cancers, respectively; similarly, higher

levels of H3K9ac expression in lung cancer patients are linked to a shorter survival period . Thymoquinone has

recently been shown to modulate epigenetic machinery, such as histone acetylation and deacetylation, DNA methylation,

and demethylation, all of which are significant epigenetic changes that may lead to carcinogenesis . TQ has

antineoplastic activity against human tumors, antioxidant effects and anti-inflammation in animal models and cell culture

systems, chemopreventive effects, and most notably, anti-multidrug-resistant variants of human malignant cell .

2.1. The Mechanistic Approach to Treat Cancer Using TQ Drug Molecule

The pharmacological effects of TQ on different cell lines and animal models demonstrated substantial antineoplastic

activities in numerous cancers, including breast, prostate, brain, pancreas, gastric, colon, bladder, lungs, bone, cervical,

and many more . Mechanistically, it can suppress various properties, including multiplication in cancer cells, apoptosis,
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activation of detoxifying enzymes, metastasis, suppression of tumor-angiogenesis invasion, and cell cycle control 

.

Kinases are cellular enzyme stimuli, essential for cellular metabolic functions, and their overexpression is closely linked

with cancer . TQ effectively targets many phosphoinositides, including 3-kinase (PI3K) , mitogen-activated protein

kinase (MAPK)/Janus kinase signal transducers and transcription (JAK/STAT) , polo-like kinase 1 (PLC1)  and

tyrosine kinase .

Responsive and resistive MCF-07 breast cancer cell lines displayed good anticarcinogenic activities with TQ analogs such

as caryophyllyl and germacrylic conjugates as well as fatty acid conjugates . The TQ neutralizes oxidative free radicals

and ameliorates doxorubicin-induced nephrotoxicity . The carcinogenesis produces eicosanoids, and peroxidizes

membrane lipid suppressive activities . Furthermore, TQ displayed a hyperproliferative effect in rats and also abrogated

Fe (III) nitrilotriacetic acid (Fe-NTA) induced oxidative stress . TQ reduced Cyclin A, Cyclin B1, Cyclin D1 and Cyclin E

 expression and increased levels of p21 and p53 . TQ is capable of decreasing Bcl-2 and increasing

cleaved caspase-3, 9, and 7, and Bax proteins, as well as modulating the expression of microRNA (miRNA) and long non-

coding RNAs (lncRNA), acetylation/deacetylation of histone along with methylation/demethylation of DNA, resulting in

mitochondrial apoptosis induction . TQ also halts the PI3K/AKT signaling pathway by upregulating PTEN, thus

interfering with GSK-3β activity, enhancing β-catenin degradation, and decreasing MMP-9 and MMP-2 levels in

esophageal cancer cells (Eca109 cells) . MicroRNA-34a (miR-34a) expression is vital to cancer development and

metastasis , and its expression is reduced by TQ in human metastatic breast cancers (MBC) compared to normal

breast tissues . Altogether, microRNA-34a can act as therapy either alone or in combination with TQ, and synergize

therapeutic potential . TQ exerts antiproliferative activities in cancer cells by modulating the structure of DNA . TQ

synergized pancreatic cancer cells (MIA Paca-2 cells) cytotoxicity along with juglone via ferroptosis, an iron-dependent

mechanism . The mechanistic approach of TQ for cancer treatment is depicted in Figure 3 and in vitro and in vivo

applications of TQ are reported in Table 1 and Table 2, respectively.

Figure 3. TQ prevents carcinogenic intermediate synthesis by inhibiting the G2/M phase of the cell cycle. It also inhibits

ROS-mediated DNA damage to prevent tumorigenesis. TQ upregulates pro-apoptotic genes (p21 and p27) and

downregulates the anti-apoptotic gene (Bcl-2), thereby arresting the G2/M phase of the cell cycle. (CDK—cyclin-

dependent kinases; CYP—cytochrome P; TQ—Thymoquinone).

Table 1. In vitro applications of thymoquinone in the treatment of cancer (↓: decreases, ↑: increase).

S.N Drug and Dose Cell Line Molecular Target Outcome Ref.

1 TQ
(25–75µM) Eca109 cells

↑p21, and p53 levels; ↓Cyclin A,
Cyclin B1, and Cyclin E expression;
↑β-catenin degradation, and ↓MMP-
2, 9 levels; ↓in Bcl-2 and ↑caspase-
3,7 and 9 cleavages, ↑Bax, ↑PTEN

Induced cell cycle arrest
in the G2/M phase; ↓cell

proliferation and
invasion

2 TQ (511.19 µM) and
juglone (40.90 µM)

MIA PaCa-2,
BXPC-3, and

Panc-1 pancreatic
cancer cells

Ferroptosis Synergism in anticancer
potential
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S.N Drug and Dose Cell Line Molecular Target Outcome Ref.

3 TQ (2.5–200 μM) C6 rat glioma
cells

Induced DNA damage, apoptosis,
and ↑iROS. ↓GSH; ↑intracellular

calcium level which initiates
apoptosis ↓Bcl-2 and pSTAT3;
↑Bax, ↑Caspase-3,9; ↓MMP and

GSH levels

Dose-dependent
apoptosis induction

4 TQ (1–50 µM)
MDA-MB-231,

MDA-MB-436, and
BT-20

↓expression of eEF-2K, Src/FAK,
and Akt; ↓NF-κB/miR-603 signaling

axis

Dose-dependent ↓cell
proliferation and

migration

5 TQ, artemisinin hybrids

CCRF-CEM and
Multidrug-
Resistant

CEM/ADR500
Leukemia Cells

Specifically inhibit cancer cells Low toxicity/high
selectivity profile

6 TQ(5µg/mL) and Emodin
(25µg/mL)

MCF-7, MDA-MB
231, MDA-MB 468

and T47D

↑ROS generation; ↓FAK and
Integrins, ↑p53, ↑Bax, and ↑cleaved

caspase 3 expressions; ↓Bcl-2

↑apoptosis, ↓cell
migration, and

↓stemness efficiently in
breast cancer

7 TQ, TQ+cisplatin
TQ+DOX

HCC HepG2
and SMMC-7721

HL-7702 cells
↑ROS, ↑caspase 3 ↑apoptosis and

selectively ↓cell viability

8 TQ (2–150 μM) A375, B16F10

↓NLRP3 (NACHT, LRR, and pyrin
domain-containing protein 3);

↓proteolytic cleavage of caspase-1;
↓IL-1β and ↓IL-18, ↓NF-κB, ↓ROS

Inactivation of caspase-
1, ↓melanoma cells

migration

9 TQ 20 gm/kg HCT116 ↓CD44, ↓EpCAM, ↓Ki67, ↑p53, ↑p21,
↓PCNA, ↑TUNEL positivity, ↓γ-H2AX

↓viability of 5FU-
sensitive and resistant

HCT116

10 DOX, TQ, TQ/DOX HepG2,
Huh7

↑miR-16 and miR-375,
↑caspase 3; ↓Bcl-2

↓apoptosis;
↓cell viability

11 TQ, cisplatin, geraniol MCF-7 ↑SOD, ↓myeloperoxidase, ↓lipid
peroxidation; ↓8-isoprostane levels ↓cisplatin neurotoxicity

12 TQ (8 μM) HEp-2 ↓MMP; ↓mitochondrial cytochrome
c release

↑apoptosis of tumor
cells

13 TQ (20 mM or 40 mM)

Human
glioblastoma

cells T98G and
U87MG,

Gli36DEGFR

↑recruitment and accumulation of
the microtubule-associated

protein light chain 3-II (LC3-II);
accumulation of the LC3-
associated protein p62

↑autophagy and induces
cathepsin-mediated,

caspase-independent
cell death

14 TQ (10–40 mM)) HaCaT, HEK001
HeLa

↑GSN levels, ↑p27, ↑cleaved PARP;
↑UHRF1 by HPV E6/E7 causes GSN

silencing

↑apoptosis and cell
cycle arrest in early

stage

15 Indirubin-3-monoxime
and TQ A549

↓Bcl-2/Bax ratio, ↓p-AKT, ↓p-mTOR,
↓Caspase-3, ↓p-53, ↓NFκB,

↓Akt/mTOR/NFκB, ↑p38, ↑ROS;
↓tumor growth by targeting NF-κB;
↑PPAR-γ activation; ↓Akt, 4E-BP1,

↓eIF4E, S6R and ↓p70S6K
phosphorylation

↓metastasis, ↑cell cycle
arrest; ↓tumor growth

16 TQ (5 μM-10 μM)
clone E6-1, HL-

60,
K-562

↑thymine glycol metabolite; induce
DNA damage; ↓guanine levels

↑antiproliferation,
↑apoptosis

17 TQ (10 μM)

OVCA429,
SKOV3, HeyA8,

OVCAR3,
OVCAR8

↓JNK, ↓Src, ↓FAK are involved in
LPA-induced invasive cell

migration

↓migration of cancer
cells in a dose-

dependent manner

18 TQ (20- 40 μmol/L) T24, 253J SV-
HUC-1

↓activation of Wnt/β-catenin
signaling pathway, ↑E-cadherin,

and ↓N-cadherin, ↓vimentin, ↓MYC,
↓Axin-2, ↓MMP7, ↓CyclinD1, ↓β-

catenin

↓epithelial–
mesenchymal transition
in bladder cancer cells

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[52]

[76]

[77]

[78]

[79]



S.N Drug and Dose Cell Line Molecular Target Outcome Ref.

19 TQ (5 μM) and alpha-
hederin (50 μM)

PC3, HT-29,
HCT116 Zinc level modulations Dose-dependent

cytotoxicity

20 TQ (1–100 μM) 786-O cells
↑sub-G1 population and % of

apoptotic cells. ↓collective
migration

Induces dose and time-
dependent cytotoxicity,

↓invasive potential

21 TQ and paclitaxel MCF-7, T47D ↑Pre-G phase cells, ↓TWIST-1 gene,
and ↑SNAIL-1, ↑SNAIL-2 genes.

↓paclitaxel resistance,
↑apoptosis, ↑necrosis,

22 TQ (50 µM), Cur (15 µM),
Caff (10 mM), DOX HCT116, MCF7

↓bromodeoxyuridine incorporation,
↑accumulation of senescence-

associated β-galactosidase (SA-β-
gal), ↑cell cycle arrest, and ↑p53,

↑P-p53, and ↑p21 proteins

↑DOX sensitivity and
apoptosis towards
proliferative cells

23 TQ MDA-MB-231 ↓Beclin-1, ↓VEGF, ↓Integrin-β1,
↓MMP-2,9

↓proliferation and
migration, ↓Autophagy,

↓colony formation

24 TQ DU-145, PC-3,
LNCaP ↓p-Akt, ↓NF-κB↓MMP-3, ↓MMP-7

↓IL-7-induced tumor
progression and

metastatic invasion in
PC-3 cells

25 TQ (50, 100 μM) MCF-7, HepG2

↓sphingosine-1-phosphate (S1P),
↓ceramide-1-phosphate (C1P), ↓NF-

κB1 mRNA, ↓NF-κB, ↓p65 protein
levels, ↑neutral sphingomyelinase

(N-SMase) enzyme activity,
↑cellular levels of C16-C24

ceramides and ↑cleaved caspase-3;
↑glucose-regulated protein 78-kd

(GRP78) mRNA and protein

↑ceramide accumulation
and ER stress in

conjunction with ↓S1P,
C1P, and NF-κB

mediated cell survival
↑cancer cell death by
triggering apoptosis

26
TQ (10 mM) +

Difluoromethylornithine
(0.5 mM)

T lymphoblastic
leukemia (ALL)
Jurkat cell line

↓UHRF1, ↓DNMT1, ↓HDAC1 Synergism, ↓cancer cell
viability and ↑apoptosis

27 TQ and Cur NLF, NB69, SK-N-
BE(2)   ↓proliferation,

↑apoptosis

28 TQ (50–100 µM) + FA
(450 µM) MDA-MB 231 ↓PI K/Akt pathway Synergism in ↓cancer

cell proliferation

29 TQ (20–100 μM) C6 glioma cells
↑H O  generation, ↑microconidial

ROS, ↓intracellular GSH level, ↓NF-
κB, ↓PI3K, and AKT activation

↑apoptosis,
↓proliferation, and

↓glioma cell viability

30 TQ (20–60 μM)
786-O,

786-O-SI3, BFTC-
909

↓Nanog, ↓Nestin, ↓Bid, ↑RO ↓CD44,
↓Oct-4, ↓Bcl-2, ↑cytochrome c,

↓phosphorylation of mTOR
(Ser2448 and 2481) and AKT

(Ser473)

↓the proliferation of
renal cell

carcinoma cells via
ROS-induced apoptosis

31 TQ (0.5 μM) HeLa cells ↓ROS generation ↓cancer cells
proliferation

32 TQ (1–30 μM) A431 cells

↑intracellular ROS, ↑p53, ↑Bax,
↓Mdm2, ↓Bcl-2, ↓Bcl-xl, ↓STAT3,

↑caspase-9,7 and 3;
↓phosphorylation of the upstream
kinase, ↓Src, ↓cyclin D1, ↓survivin

↑apoptosis, ↓cell
viability in dose-

dependent manner

33 TQ (20 μmol/L TQ) LoVo

↑p-PI3K, ↓p-Akt, ↓p-GSK3β, ↓β-
catenin, ↓COX-2 expression; ↓PGE2
levels and the suppression of EP2

and EP4 activation

↓cancer cell
proliferation.

↓cell migration

34 TQ (5 μM) A549
↑Bax and ↓Bcl2 and ↑Bax/Bcl2

ratio, ↓cyclin D and ↑p21, ↑TRAIL
receptor 1 and 2, ↓NFκB, ↓IKK1

↑G2/M cell cycle arrest,
↑apoptosis

35 TQ + DTX DU145,
C4-2B

↓PI3K/AKT, ↑BAX and ↑BID,
↑caspase-3, ↑PARP and ↓BCL-XL

↑cytotoxicity and
↑apoptosis
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S.N Drug and Dose Cell Line Molecular Target Outcome Ref.

36 TQ (10–40 μM) +Dox (50–
100 nM)

HTLV-1 positive
(HuT-102) and

HTLV-1 negative
(Jurkat) CD4+

malignant T-cell
lines

↑ROS, ↓tumor volume, ↓MMP ↓cell viability, induced
apoptosis

37 TQ (2 μM,)

Irinotecan-
resistant (CPT-11-

R) LoVo colon
cancer cells

Activate JNK and P38 and MOMP ↑the total cell death
index and ↑apoptosis

38 TQ (2–100 µM) A431 and Hep2 ↑Bax/Bcl-2 ratio, ↓Akt and JNK
phosphorylations

↓tumor volume and
mass; ↑apoptosis; ↓cell

proliferation

39 TQ (10–60 mM) B16-F10

↓p-STAT3, p-JAK2 expression, and
p-STAT3, ↑Bax and ↑caspase-3,

↓VEGF-A, ↓MCP-1, ↓TGF-b1,
↓RANTES, and↓IL-1β

↑cytotoxicity;
↑apoptosis

40 TQ (10 mM) A549 ↑Bax/Bcl-2, ↑p53; ↑caspases-3 and
9

↓cells viability;
↑apoptosis

41 5-FU + TQ HCT116 ↓WNT/ß-Catenin and PI3K/AKT, ß-
Catenin ↓angiogenesis

42 TQ (10 mg/kg) MDA-MB-231 ↑E-cadherin mRNA expression
↓proliferation, migration,

↓invasion of cancer
cells.

43 TQ (36 μg/mL) +
tylophorine (88 μg/mL) Hela cells   ↑cell arrest in the G2/M

phase

44 TQ (20 µM) Jurkat cells,
MDAMB-468 cells

↓UHRF1), ↓DNMT1 G9A, ↓HDAC,
DNA methylation and histone post-

translational modifications

↑tumor suppressor
genes

45 TQ (40 µM) A498 ↑Bax, ↓Bcl-2, ↓Akt phosphorylation ↓proliferative,
↑apoptosis

46 TQ (1–10 µM) HEK293 cells,
Caki-1, A498

↓HIF-1α-mediated glycolysis via
ubiquitination-proteasome

dependent pathway

↓cancer cell
angiogenesis

47 TQ (10–100 µM) HeLa cells
(Cancer)   ↓dose-dependent

cellular viability

48
TQ (0.5 mM) +

cyclophosphamide (20
µM)

Her2+SKBR-3
and Her2- MDA-

231

↓PI3K/Akt signaling, ↑PTEN, ↓cyclin
D synergistic cells death

49 TQ (0.003 mg/mL)
HSC-3, HSC-4,
oral fibroblast,
HACAT cell line

  Dose and time-
dependent cytotoxicity

50 TQ (0–80 µM) PC3 cell line ↑ROS, ↓MCL-1, ↓MCL-XL, ↑BAX,
↑AIF, ↑cytochrome c induced apoptosis

51 TQ AGS(CRL-1739)
cell line VEGF-A gene expression induced apoptosis

52 TQ KB cells ↓activation of PI3K/Akt pathway. ↓proliferation,
↓migration, and invasion

53 TQ (60 μmol/L) 786-O, ACHN ↑p-AMPK w, ↓p-mTOR, ↑p-S6K ↓metastasis, induce
autophagy

54 TQ+ gemcitabine MCF-7, T47D ↓CD44 /CD24  cell clone Potentiate gemcitabine
efficacy

55 TQ (0.5–20 µM) 769-P and 786-O
↑E-cadherin, ↓Snail, ↓ZEB1

expression, ↑LKB1
phosphorylation, ↑AMPK

↓metastasis
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S.N Drug and Dose Cell Line Molecular Target Outcome Ref.

56 TQ (40–80 µM)
T24 and 253J

bladder cancer
cell

↓Bcl-2, ↓Bcl-xl, ↑Bax, ↑release of
cytochrome C and AIF, ↑cleaved
subunits of caspase-3, 8, 7, and

PARP

Induce proliferation and
apoptosis

57 TQ (20–80 µM) U87MG, U118MG,
and A172

↑Par-4, ↑p53, ↑p21, ↑Rb, ↓lamin B1,
↓cyclin E, ↓cyclin-dependent

kinase-2 (CDK-2)
↓Glioblastoma

58 Temozolomide (100 μM)
+ TQ (50 μM) U87MG cell line. ↓MMP 2, ↓MMP-9 ↑cytotoxicity, ↓cells

invasion

59 TQ (1–30 μM) Jurkat, HL60 and
HeLa cell line

↑UHRF1 degradation, ↑cleaved
caspase-3 and ↑p73 ↑apoptosis

60 TQ (10 mg/kg 5–200 µM) B16, F10 ↓p-STAT3, ↑DNA damage, and ↑
intracellular ROS ↑apoptosis

61 TQ (20, 100 mg/kg) IV MDA-MB-231,
MDA-MB-436,

↓elongation factor 2 kinase,
↓Src/FAK, ↓Akt, ↑miR-603, ↓NF-kB ↓tumor growth

Table 2. In vivo applications of thymoquinone in the treatment of cancer (↓: decrease, ↑: increase).

S.N Drug and Dose Animal Model Molecular Target Outcome Ref.

1 TQ, DOX, and
TQ+DOX Wistar albino rats

↑apoptotic index, caspase 3, and
HSP90 expressions in the DOX

group
↓DOX toxicity

2 Cisplatin+ TQ+
vitamin E Wistar rats

↓Catalase, ↓glutathione
peroxidase, ↓SOD, and ↓reduced

glutathione levels

↑cisplatin effect,
↓oxidative stress,
↓cisplatin toxicity

2 TQ (5–25 μM)

LPS/D-galactosamine
induced acute hepatitis
and HCl/EtOH-induced
gastritis mouse model

↓(AP)-1/NF-κB pathways, ↓iNOS;
↓NO, ↓TNF-α; ↓COX-2, ↓IL-6,

↓PGE2, ↓IL-1β; ↓IRAK1
↓inflammatory response

3 TQ (1–25 µM) Caki-1 cells, xenograft
mouse model

↑p53; ↑Bax; ↓Bcl-2; ↓Bcl-xl, ↓cyclin
D1, ↓cyclin D2, and ↓survivin via

suppression of JAK2/STAT3
signaling pathway

Induces apoptosis via
accumulation of ROS,

↓tumor growth

4

TQ (20 mg/kg)
and

pentoxifylline
(15 mg/kg)

female albino mice

↓Notch1, ↓Hes1, ↓Jagged1, ↓β-
catenin, ↓TNF-α, ↓IL-6, ↓IFN-γ, and
↓VEGF with ↑in IL-2, ↑CD4, ↑CD8,

and↑apoptotic cells

↑chemotherapeutic
effect of cisplatin by

targeting Notch
signaling pathway,

↓tumor growth

4 TQ 50 mg/kg Colorectal cancer in SD
rats ↑Antioxidant activity

Protective and
preventive measure in
cancer management

5 TQ (20 mg/kg) SD rat

↑TRAIL/TRAILR2, ↑caspase-3, and
↓Bcl-2 downregulation, ↓TGF-β1
gene expression level. ↑hepatic
GSH level and marked ↓hepatic

MDA level, ↓alpha-fetoprotein level

↓HCC progression,
↑apoptosis

6 20 mg/kg BW Diethylnitrosamine
induced HCC in rats. ↓EGFR/ERK1/2 activation protective effect against

HCC

7 TQ Hamster oral cancer
Induced by DMBA

↓PI3K/AKT/mTOR signaling
pathways

↓the mRNA expression level of NF-
κBp50/p65

↑chemopreventive
activity

8 TQ(5 mg), 6-MP
(5 mg/kg) Albino rats

↑spermatogenesis, ↓P53,
↓caspase-3 apoptotic pathway,

↑PI3K; ↓TNF-α

↓6-MP induced testicular
damage, ↑its anticancer

potential
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2.2. TQ Nanocarrier for the Treatment of Cancer

Many drugs do not reach the antineoplastic drug pipeline because of low aqueous solubility, high toxicity, large doses, and

shorter half-life. Nanoformualtions provide opportunities to improve the pharmacokinetics of these drugs for precise

treatment at the molecular level with reduced off-target effect . The tumor tissues that exhibit enhanced

permeability and retention (EPR) and hypoxia-like properties could be utilized for targeted drug delivery. The NPs take

advantage of the EPR effect and accumulate in the cancer cells, providing maximum therapeutic efficacy with minimum

off-target effect . The nanoformulations, including polymeric (natural/synthetic), lipidic (liposomes, niosomes,

ethosomes, cubosomes, solid lipid nanoparticles (SLN), nanoemulsion, and microemulsion), protentious (bovine serum

albumin, human serum albumin) and metallic (silver, gold, iron, etc.), in combination with surface modification, are utilized

for targeted delivery of therapeutic drugs in tumor sites . NPs deliver drugs at the selective tumor site utilizing

multiple approaches, including passive targeting and active targeting. Some of them are explained in the following

sections to deliver TQ at the target site. Applications of TQ nanocarriers and surface-modified TQ nanocarriers for the

management of cancer and inflammation are reported in Table 3 and Table 4, respectively. Moreover, the therapeutic

importance of TQ-loaded nanoparticulate-based therapies for RA management is also reported in Table 3 with comparison

to the conventional formulations and pure TQ.

Table 3. TQ nanocarrier in the management of cancer

S.N Formulations Animal Model/Cell Line Major Finding Ref.

1 Core-shell NPs of mesoporous silica SW1088, A172,
HCN2

pH driven TQ release in tumor acidic
environment ↑cell cycle arrest

2 Docetaxel (DTX) and TQ in borage oil-
based nanoemulsion

MCF-7
MDA-MB-231

↑DTX anticancer potential; ↓dose,
↑apoptosis

3 TQ-loaded Soluplus-Solutol HS15
mixed micelles 2 SH-SY5Y ↑solubility (10-fold), ↑neuroblastoma cell

migration

4 TQ- Chitosan NPs (12.5–200 µg/mL) HepG2 ↓cancer cells proliferation,
↑antimetastasis

5 TQ-loaded methoxy poly (ethylene
glycol)-b-poly(“-caprolactone-NPs

MCF-7,
PANC-1, Caco-2

Balb/c mice

↑oral BA (1.3-fold), ↑Solubility, ↑cancer
cells selectivity

6 TQ loaded Soy phytosomes A549
Improved release pattern; ↑the dose-

dependent anticancer effect, ↑apoptotic
induction

7 TQ-capped iron oxide NPs (TQ-IONPs) MDA-MB-231 ↑BA; ↑cellular uptake of TQ-IONPs;
synergize the chemo-photothermal effect

8 TQ loaded radio-iodinated folic acid-
chitosan NPs

SKOV-3
Caco-2

Folate receptor-mediated NPs ↑cellular
internalization, ↑targeting to ovarian

cancer cell

9 TQ loaded technetium-99m based NPs
( Tc-TQ-NPs)

Rhabdo-myosarcoma
cancer cells line

↑internalization and ↓externalization of
radiopharmaceuticals; ↑anticancer

potential

10 Cockle-shell-derived aragonite CaCl
NPs for co-delivery of DOX and TQ MBA MD231 3D Co-delivery ↓cellular migration and

invasion,

11 Glyceryl monooleate, cubosome for TQ
delivery

MCF-7
MDA-MB-231

↑cytoplasmic accumulation; ↓cancer
cells viability; ↑antitumor activity,

↑apoptosis

12 PLGA-PEG-Pluronic-TQ-NPs
Tamoxifen resistant
breast cancer cells
UACC 732, MCF-7

↑EE, sustained release, ↑targeted
delivery, selective cytotoxicity to UACC

732

13 Vitamin-E-TPGS lipospheres for
codelivery of cabazitaxel and TQ

MCF-7
MDA-MB-231

↑cellular internalization
↑anticancer potential,

14 Chitosan grafted lipidic nanocapsules
for co-delivery of DTX and TQ

TNBC
MCF-7

↑intracellular dual drug payload, escape
endosomal effect, ↑anti-angiogenic

effect, ↑cytotoxicity

15 Carum- and TQ loaded niosomes for
target breast cancer cells

MCF-7,
CaSki,
SiHa

↑solubility, ↑BA and ↑permeability, ↓Cell
Migration, ↑cytotoxicity
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S.N Formulations Animal Model/Cell Line Major Finding Ref.

16 TQ and Cur loaded fluorescent
liposomes A549

↑cellular internalization
↓cellular proliferation,

↑cancer cells cytotoxicity

17 TQ loaded mesoporous silica NPs HeLa
MCF-7

↓effective dose (8-fold),
↑aqueous solubility,

↑cellular internalization
↓cell migration,

↑cytotoxicity, ↑apoptosis

18 TQ-NLC HepG2
3T3

↑cellular accumulation driven by time
and dose; modulate cellular morphology,

↑anticancer potential

19 TQ loaded SLN of phospholipon 90G Carrageenan induced
paw edema in rat

↑BA, ↑anti-inflammatory potential ↓paw
edema,

↑antioxidant potential
 

20 Ethosomes for topical TQ delivery Carrageenan rat paw
edema

↑EE, ↑skin deposition
↓skin irritation

21 TQ loaded chitosan, pluronic F127
liposome for topical delivery

Carrageenan-induced
paw edema

↑EE, ↑skin penetration
↑anti-inflammatory activity

22 SNEDDSs containing black seed oil and
cur

Carrageenan-induced
paw edema

↑entrapment efficiency, ↑transdermal
penetration

↑anti-inflammatory activity

23 black seed oil loaded egg yolk
liposomes

Eddy hot plate method
in Swiss albino mice

↑BA; ↑EE,
↑anti-inflammatory activity

24 TQ and piperine loaded micro vehicle of
guar gum HepG2 cell lines

pH-responsive delivery
↓lethal dose

↑bactericidal activity
↓minimum inhibitory dose

25 Bio-SNEDDSs for co-delivery of cur and
TQ MCF-7 cells ↑drug loading, ↓cell viability

26 Fluorescent organic NPs A549, HeLa SiHa, HEK-
293T ↑BA, theranostic applications

27 TQ and resveratrol loaded silica NPs HeLa cell line ↑EE, ↑drug loading, ↑apoptosis

28 chitosan-based nanocarrier for the
encapsulation of NS oil

HCT 116 (colorectal
carcinoma), PC3
(prostatic cancer)

dose-dependent ↓cell viability

29 TQ Pluronic NPs MCF7 cells ↑TQ encapsulation, ↑cytotoxicity

30 TQ-NP of polystyrene-block-
poly(ethylene oxide) diblock polymer

MCF-10-A cells
MCF-7 cells,

MDA-MB-231 cells

↑cellular uptake;
↑cytotoxicity

31 pH-sensitive multilamellar gold
niosomes along with Akt-siRNA

tamoxifen-resistant T-
47D and Akt-

overexpressing MCF-7
cells

↑TQ delivery at cancer cell;
↑anticancer potential, resensitized T-47D

cells

32
polysaccharide microcontainers of

chitosan, xanthan gum soybean oil, and
Nile red for TQ delivery

mouse melanoma
M-3 cell

↑cellular uptake, ↓nonspecific toxicity;
↑antitumor effect

33 Myristic acid-chitosan nanogels MCF-7 ↑solubility, ↑cellular uptake

34 ketoprofen and TQ loaded mesoporous
core-shell silica spheres

MDN- and XG-2-type
myeloma cancer cells

lines
(IL-6 dependent)

↑cellular uptake and accumulation,
↑apoptosis

35 TQ loaded (PLGA)-NPs MDA-MB-231 ↑EE, ↑cancer cells toxicity

36 TQ loaded silver NPs MDA-MB-231 ↑cancer cells radiosensitivity

ancer and inflammation (↓: decrease, ↑: increase).
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Table 4. Surface-modified TQ nanocarrier in the management of cancer (↓: decrease, ↑: increase).

S.N Formulations Animal Model/Cell Line Major Finding Ref.

1 Chitosan- (CS)-coated poly(d,l-lactide-co-glycolide)
NPs MDA-MB-231 MCF-7

↑Intestinal permeation; ↑BA;
↓dose and dosing frequency,

↑antioxidant potential

2 Anisamide coated TQ loaded lipidic core
nanocapsules shell of eudragit S100

HT-29,
HCT-116,
Caco-2

Anisamide coating ↑colonic
delivery of TQ due to specific
binding with overexpressed

sigma receptor

3

RNA aptamer A10 coated TQ loaded planetary ball-
milled NPs of starch PCL, and PEG for specific

bindings to prostate-specific membrane antigen
overexpressed ABC transporter genes

DOX resistant C4-2B-R
and LNCaP-R cells

with a high expression
of Hh

↑targeted delivery
↑circulations time, resensitized

cancer cells for DOX

4 TQ loaded porous PVPylated Fe O4 nanostructures MDA-MB-231
↑ROS related cell death, ↑water-

solubility, pH-dependent
cellular delivery, ↑apoptosis

5
TQ loaded hyaluronic acid-decorated Pluronic

NPs

MDA-MB-231,
MDA-MB-468), murine
(4T1), chick embryos

↓cell migration at a low dose;
↑circulation time; ↑cancer cells

targeting

6 PEGylated vitamin-E TPGS-lipidic nanocapsules
for co-delivery of DTX and TQ

MCF-7 and
MDA-MB-231

PEGylation ↑circulation time;
Re-sensitized the resistant
TNBC cells; ↓side effects;

↑anti-metastatic effects

7 Chitosan coated PLGA-NPs for TQ delivery A375 ↑cellular accumulation;
sustained delivery ↑cytotoxicity,

8
Poly-L-lysine and PEG-coated polysaccharide

nanocontainers of diethylaminoethyl
dextran/xanthan gum for TQ delivery

MCF-7 cells ↑cellular accumulation
↑cytotoxicity

9 Eudragit L-100 chitosan, HPMC, and PVA NPs of
TQ for colon cancer treatment Caco-2 ↑colonic drug delivery

↑cytotoxicity

10 PEGylated liposome of dihexadecanoyl-sn-glycero-
3-phosphocholine for co-delivery of DTX and TQ MCF-7

↑drug encapsulation
↓docetaxel dose,

↑cancer cells cytotoxicity

11 Transferrin decorated TQ loaded PEG-PLGA-NPs  
↑cellular accumulation

↓therapeutic dose
↓onset time, ↑cytotoxicity

12 AS1411-conjugated nanodroplets of phospholipids
1,2-dipalmitoyl-sn-glycero-3-phosphocholine MDA-MB-231

Specific binding with
overexpressed nucleolin on to

cancer cell surface,
↑cytotoxic potential

13 PEGylated LMW TQ-loaded chitosan nanocapsules MCF 7, HEK 293 ↑absorption, ↑BA
↑cancer cells targeting

2.2.1. Passive Targeting Approach in Cancer Drug Delivery

Passive Targeting Utilizes the Tumor Microenvironment for Drug Delivery

Tumor vasculature is different from normal cell vasculature. Blood vessels of cancer tissue have comparatively larger

fenestration with the poor lymphatic drainage system, which results in enhanced retention and permeation of the nano-

sized particulate matter . Based on the delivery site, the size and surface of the NPs can be modulated. NPs’ size and

surface architecture modulation also avoid reticuloendothelial system (RES) uptake and make it circulate for a long period

of time. This could be explored in passive drug delivery. Various strategies depicting passive targeting of TQ via

nanoparticles are reported in Figure 4.
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Figure 4. Systemic diagram depicting diverse approaches intended for passive targeting of TQ via nanoparticles.

Passive Targeting through Long-Circulating Nanocarriers

Chitosan-grafted lipid nanocapsules  and PEGylated liposomes  were reported for the co-delivery of TQ and

docetaxel (DTX) against drug-resistant breast cancer. Chitosan grafting improved cellular uptake and escaped endosomal

effect; PEGylation increased circulation time of the dual payload , resulting in increased cytotoxicity against triple-

negative breast cancer (TNBC) cells (MDA-MB-231 and MCF-7). A long-circulating PEGylated vitamin E lipidic

nanocapsule loaded with TQ and DTX was also investigated against resistant breast cancer cells (MCF-7 and MDA-MB-

231) . PEGylation in vitamin E lipidic nanocapsules inhibits p-glycoprotein efflux, re-sensitizes the resistant TNBC cells

and provides enhanced antimetastatic effects with reduced multiple side effects. Co-encapsulation of TQ with DTX

improved loading efficiency into PEGylated liposomes and vitamin E lipidic nanocapsules as well as the chemosensitivity

of DTX against breast cancer cells (MCF7 and MDA-MB-231).

PLGA-PEG-Pluronic TQ NPs were designed for sustained delivery of TQ into tamoxifen-resistant breast cancer cells

(UACC 732, MCF-7) . TQ-NPs reduce the dose and synergize tamoxifen chemoprevention potential with selective

tumor cell toxicity. PEGylated LMW chitosan nanocapsules selectively deliver TQ into cancer cells (MCF 7 cells)  as

chitosan (with pKa 6–6.5) solubilizes in the inter, as well as intracellular acidic microenvironment of cancer cells, thereby

delivering TQ in a targeted manner.

Passive Targeting through Surface Charge and Size of NPs

Nanocarriers overcome TQ pharmacokinetics issues and deliver it at the specific site with enhanced efficacy. A co-

liposphere of Cabazitaxel (CBZ) and TQ was made of vitamin E-TPGS tricaprin, and egg phosphatidylcholine improved

cellular internalization, which potentiates dose-dependent apoptosis as well as anticancer efficacy against MDA-MB-231

and MCF-7 cell lines . The poly-L-lysine (PLL) and polyethylene glycol surface-decorated nanocontainers (NC-PLL)

complex of diethylaminoethyl dextran/xanthan gum enhanced intracellular accumulation of TQ . The positive surface

charge of the NC-PLL significantly favored nanocontainer binding on the negatively charged cell membrane as compared

to nonmodified nanocontainers, resulting in negatively charged NC-PEG. NC-PLL dominated in terms of cytotoxic efficacy,

as investigated in MCF-7, likely due to enhanced accumulation in cancer cells.

Mesoporous silica NPs (TQ-MSNPs) improved TQ aqueous solubility and photostability as well as reduced the

therapeutic dose (8-fold), which delayed cell migration and enhanced cytotoxic and apoptotic potential, as evaluated in the

MCF-7 and HeLa cell lines . The core-shell NPs of mesoporous silica delivered TQ to glioma cells selectively, which

triggered cytochrome c, increased caspase-3 activation, and cell cycle arrest at the G2/M phase . Chitosan-coated

PLGA NPs containing TQ enhanced cytotoxic potential when compared with surface-decorated TQ-poly(lactic co-glycolic

acid) NPs and TQ alone; this was investigated through the MDA-MB-231 and MCF-7 cell lines . The antimetastatic
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potential of TQ was enhanced by chitosan nanoparticles against HepG2 cell lines through longer duration inhibitory

actions when compared with free TQ . TQ-NLC-NPs accumulated in cancer cells and inhibited their proliferation

through time and dose-dependent modulation in the cellular morphology, as investigated in HepG2 cancer cells . The

polymeric NPs of methoxy poly(ethylene glycol)-b-poly(-caprolactone) improved the systemic bioavailability of TQ (1.3-

fold) with slower elimination rates, which provides greater antiproliferative efficacy against varieties of pure cell cultures of

human carcinoma (PANC-1, MCF-7, and Caco-2) . The nanoarchitecture of polymeric shells increased TQ

solubility, intestinal absorption, and bioavailability rates, resulting in higher cancer cell selectivity compared to free TQ. A

soy phytosomal formulation of TQ with a dual release pattern (initial burst followed by prolonged release) revealed

excellent anticancer activity against a lung cancer cell line (A539) . The sustained release of TQ from phytosome

accumulates TQ in the G2-M and pre-G1 phases of cancer cells, which initiate dose-dependent apoptosis and cell

necrosis activities via caspase-3 activation. A Soluplus -Solutol  HS15 micelles formulation enhanced the anti-migratory

efficacy of TQ (1.5–10 µM) through improving aqueous solubility (10 times) and encapsulation efficacy, as investigated in

SH-SY5Y human neuroblastoma cells . The synergistic potential of TQ loaded in cockle-shell-derived aragonite CaCl -

NPs was reported with doxorubicin to reduce cellular migration in mammary gland carcinoma stem cells (MDA MB 231)

. A cubosomal formulation of TQ improved cellular accumulation, which leads to increased apoptotic activity migration

in mammary gland carcinoma cell lines (MDA-MB-231 and MCF-7) . Chitosan-coated TQ-PLGA-NPs accumulated in

melanoma cancer cells (A375) by taking advantage of the EPR effect and positive surface charge of chitosan, which

facilitate binding with the negatively charged cell membrane and induce cellular retention as well as time-dependent

cytotoxicity . TQ loading into niosomes improved cellular internalizations with controlled release of TQ, which markedly

inhibits the migration of pro-inflammatory markers in mammary gland carcinoma with respect to pure TQ .

2.2.2. Active Targeting

Receptors Based Active Targeting

A variety of surface receptors have been found to be upregulated in certain physiological conditions, including cancer, and

are widely utilized for delivery via surface-decorated nanoparticles (NPs). The surface-coated NPs can target those cells

which overexpress specific receptors on their surface and because of this, the nanoparticles attach to these . The same

is shown in Figure 5. The ligands which are used for surface modification include hyaluronic acid, anisamide, transferrin,

folic acid, and many more utilized for active targeting of TQ into cancer. These have been reported in the following

sections. This receptor is overexpressed in various types of cancers, including colon, brain, breast, lung, prostate, and

kidney . Anisamide is a benzamide analog, which exhibits a higher affinity towards sigma receptor-expressing cells

 Anisamide-conjugated polymeric nanocapsules of eudragit-S100 delivered TQ into the colon-specific region through

binding with overexpressed colonic sigma receptor . The RNA aptamer, A10-coated planetary ball-milled starch NPs of

TQ exclusively delivered drug into docetaxel-resistant prostate cancer cell lines (C4-2B-R and LNCaP-R) through

overexpressed prostate-specific membrane antigen and inhibited drug efflux, which improves cancer potential . The

PEG and PCL, in the ball-milled NPs, decrease non-specific binding to the cell membrane and allow prolonged

circulations. Hyaluronic acid (HA)-decorated Pluronic  NPs of TQ accumulated in TNBC cells through selective binding

with overexpressed CD44 receptor of cancer cells . Pluronic-enhanced TQ encapsulation and HA facilitate CD44

targeting and make it have prolonged circulation, which reduced the dose for cell migration by modulating both miR-

361/Rac1 and RhoA/actin stress fibers and the miR-361/VEGF-A mechanism that attenuate angiogenesis and metastasis

of TNBC cells. Radio-iodinated NPs of folic acid-chitosan specifically bind to overexpressed folate receptors of human

ovarian cancer cells (SKOV3) and improve anticancer efficacy through improved cellular internalization and retention .

A PEGylated-PLGA-TQ-NP surface decorated with transferrin potentiated anticancer efficacy of TQ through specific

binding with the overexpressed transferring receptor on tumor cells, which decreases dose and improved cellular

accumulations of NPs through EPR, as investigated in lung carcinoma A549 cells . The as1411-conjugated

nanodroplets delivered TQ into cancer cells through specific binding with overexpressed nucleolin on the cancer cells

surface as investigated in MDA-MB-231 cells . The as1411-conjugation facilitates rapid cellular uptake and dose-

dependent cytotoxicity via nucleolin-stimulated Rac1 activation .
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Figure 5. Schematic diagram of TQ nanocarriers for receptor-based active targeting.

PI3K/Akt activation in cancer cells leads to resistance to traditional chemotherapeutics . pH-sensitive gold niosomes of

TQ along with Akt-siRNA were utilized to deliver TQ into tamoxifen-resistant breast cancer cells as well as knockdown of

Akt-overexpression . These niosomes resensitized cancer cells to TQ through Akt silencing and enhanced

apoptosis by inhibiting MDM2 expression as well as inducing p53 .

Stimulus-Responsive NPs for Active Targeting

Designing stimuli-responsive NPs for active targeted drug delivery is dependent upon tumor microenvironments such as

pH, hyperthermia, catalytic enzymes, or external stimuli such as pressure, ultrasonication, or magnetic field. The stimuli-

responsive NPs retain their physicochemical properties, including structure, during their circulation. They are stimulated

upon exposure to small changes in the tumor microenvironment or external stimuli and undergo rapid changes

(aggregation, permeability, and disruption) to release the encapsulated drug. Various TQ-loaded stimuli-responsive NPs

with enhanced anticancer potentials have been discussed in the following sections. A TQ-loaded Fe SO  NPs surface

decorated with ethylene glycol and polyvinylpyrrolidone (PVP) pH-dependently delivered TQ in TNBC cells (MDA-MB-231)

. PVP surface decoration improved water solubility and delivered drugs in the acidic environment, which maximized

tumoricidal efficiency.

Eudragit L-100-coated nanoconjugates of chitosan, HPMC, and PVA pH dependently delivered TQ into the colon for

cancer management . This study finds that at pH 7 concentration, eudragit L-100 dissolves and chitosan becomes

degraded by anaerobic bacteria. The bacterial fermentation end-product butyrate forms polysaccharides with anticancer

potential; TQ is released with butyrate and reaches into cancer cells, showing higher cytotoxicity. A technetium-99m

( Tc)-labeled TQ formulation was designed for theranostic application against skeletal muscle malignancy

(rhabdomyosarcoma) . The TC with TQ synergizes anticancer potential through rapid internalization and slower

externalization, which enhanced theranostic applications. A fluorescent liposome co-delivered TQ and curcumin into lung

cancer cells (A549) and potentially inhibited cellular proliferation compared with TQ or curcumin alone or the lipidic

formulation of either of them, probably due to improved internalization . A TQ-capped magnetic nanoparticle of iron

oxide improved endocytotic internalization in breast cancer cells (MDA-MB-231 cells) and displayed a potent synergistic

chemo-photothermal effect compared with free TQ . Guar gum microvehicles rapidly release TQ in the intracellular

acidic environment of cancer cells (pH~ 5.5) compared to physiological pH (~7.4), due to breakdown of the interlinking

bonds in an acidic environment, leading to prolonged TQ release, with synergistic anticancer activity, as investigated in

HepG2 cell line .
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3. Role of TQ in Toxicity Reduction

TQ is systemically well-tolerated with a large safety profile dose (LD , 2.5 g/kg)  and has the potential to reduce

oxidative stress and systemic toxicity as the dose increases. The intravenous dose of 25 mg/kg thymoquinone

nanostructured lipid carrier (TQ-NLC) was found safe in female Sprague Dawley rats . It shows antiproliferative effect

at 20 µM, genotoxicity at concentration ≥1.25 µM, and cellular narcosis at between 2.5 and 20 µM concentrations in the

rat hepatocyte . TQ (10 mg/kg) ameliorated sodium arsenate (20 mg/kg)-induced neurotoxicity by increasing the levels

of norepinephrine, dopamine, superoxide dismutase, and catalase, and decreases serotonin, nitrate, and tumor necrosis

factor-alpha (TNF-α) levels in the cerebellum, cortex, and brain stem regions . In another study, the neuroprotective

effect of TQ (10 mg/kg/day) was observed on electromagnetic radiation-induced oxidative stress . Similarly, glutamate

and iron oxide nanoparticle-induced toxicity were also attenuated by TQ . A combined formulation of Costus speciosus,

Fumaria indica, Cichorium intybus, and TQ (CFCT) (25 mg/kg per oral) decrease cisplatin-induced hepatorenal toxicity in

rats through membrane stabilization and decreasing aspartate aminotransferase, alanine aminotransferase, and alkaline

phosphatase serum levels .

4. Recent Update on Patents of Thymoquinone

The latest patent literature search on thymoquinone and its loaded nanocarriers reported potential applications in the

prevention, balancing, and treatment of multiple physiological conditions such as cancer, inflammations, dermal disorders,

anxiety, and stress-related disorders; treatment of female urinary tract infections; and management of immunological

diseases, etc. TQ was patented alone and in combinations for the treatment of inflammatory symptoms, including the

eicosapentaenoic acid pathway . Additionally, TQ and H5WYG peptide-loaded nano-micelles were also patented for

targeted cancer drug delivery  and TQ-loaded nanodroplet emulsions for cancer targeting . TQ-loaded

nanocarriers are not limited to cancer targeting. Aminoglycoside-thymoquinone-loaded nano-liposomal formulations have

been patented for aminoglycoside antibiotic delivery . Authors rightfully assume an increase in patent outcomes when

pure thymoquinone is converted to nanocarrier-loaded thymoquinone for various pharmacological applications. The

patents illustrating the pharmacological significance of thymoquinone and related nanocarriers are recorded in Table 5.

Table 5. Patents of thymoquinone (TQ) and their nanocarrier systems related to inflammation and cancer (↓: decrease, ↑:

increase).

S.N Patent no Type of Formulations Product Claim and
Activity Outcome Reference

1 WO2016024145A1WIPO
(PCT) TQ derivative Cancer treatment ↑Anticancer effects

2 WO2018134852A1WIPO
(PCT) Vesicular formulations Treatment of dermal

inflammatory disorders ↑Bioavailability

3 WO2013030669A4WIPO
(PCT)

TQ, TQ +
eicosapentaenoic acid

Inflammation
management including
eicosapentaenoic acid

↓Inflammatory
symptoms

4 WO2016167730A1WIPO
(PCT) Nanomicelles

Nanomicelles loaded
with drug and H5WYG
peptides for anticancer

activity

↑Targeted delivery for
cancer cells

5 US20160101124A1
Nanoliposome loaded

with TQ and
aminoglycoside

Nano-liposomal
aminoglycoside-TQ

formulations for
administration to the

mammal

↑bactericidal activity,
↓renal toxicity

6 WO-2016005786-A1 The liposome of TQ and
taxane,

Liposomal formulations
comprising TQ and

taxane, and methods of
treating cancer using

the same

Synergize anticancer
effect, ↑capsulation

efficiency of the
taxane ↑liposomes

stability

7 CN-110420203-A TQ

Application of the TQ in
preparation prevention

intravascular stent
restenosis medicaments

↓intravascular
diseases such as in-

stent restenosis
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S.N Patent no Type of Formulations Product Claim and
Activity Outcome Reference

8 US10485837B2 black cumin extract.

NS seeds component for
management of anxiety,

stress, and sleep
disorders

Improve cognitive
function

9 WO-2011126544-A2 TQ+
gemcitabine/oxaliplatin,

TQ analogs for the
treatment of pancreatic

cancer

↓drug resistance,
↑chemotherapeutic

activity against
pancreatic cancer

10 US-6218434-B1 TQ and dithymoquinone

Use of the naturally
occurring quinones TQ
and dithymoquinone as

antineoplastic and
cytotoxic agents

↓drug sensitivity
against multi-drug
resistant human

cancers

11 CN-103288618-A TQ synthesis method

A synthesis method of
TQ serving as blood

vessel inhibition
medicament

A Synthesis method
of TQ serving for

blood vessel
inhibition drug

12 CN-103833871-A
Hyaluronic acid-

adipodihydrazide-TQ-
grafted polymer

TQ grafted polymer for
tumors specific delivery

↑tumors targeting,
pH-dependent drug

release

13 US-8029831-B2
TQ containing NS seed
extract + cranberry fruit

extract/

Management of
microbial infections of

the female urinary tract.

↓Urine pH,
↑antimicrobial

activity,
↓inflammation and

pain, ↓physiological
stress.

14 DE-19844022-C1

Iron-binding glyco
proteins (lactoferrin)
and/or 10-hydroxy- 2-
decenoic acid + TQ

use of iron-binding
glycoproteins and/or 10-
hydroxy-2-decenoic acid
in combination with TQ
for treatment of AIDS

and other
immunodeficiency

diseases.

↓HIV plaques

15 US20190192686A1 Nanodroplet micelle Cancer management
↑targeted delivery of

anticancer drugs,
↓systemic toxicity.

 

5. Clinical Trials OF Thymoquinone

TQ has the potential to correct various physiological conditions of the body. It is widely investigated from dietary

supplementation to chemoprevention. To date, a total of 10 clinical trials (Table 6) of thymoquinone claiming its effect on

malignant lesions, aphtha, chronic periodontitis, type 2 diabetes mellitus, oral submucous fibrosis, pediatric major

thalassemia, and supportive care in patients with COVID-19 are ongoing worldwide, the details of which are mentioned in

Table 6. Moreover, recently, a clinical trial of TQ was registered to analyze efficacy and safety for best supportive

measures (Guidelines on Clinical Management of COVID-19 issued by MOHFW, India) against COVID-19 patients. The

confirmed COVID-19 patients were assigned as Cohort A and Cohort B. Cohort A patients received 50 mg TQ once a day

for 14 days along with the best supportive measure, while Cohort B patients received the best supportive measure only.

The trial was primarily evaluated for virologic (change in positive COVID-19 status on days 8 and 15) and clinical

outcomes (proportion of patients on WHO progression scale 0 to 10 on days 8 and 15). A human trial

(CTRI/2020/12/029514) of TQ tablets (dose of 50 mg; 25 mg; 12.5 mg) was registered to measure safety and tolerability

and to analyze pharmacokinetic behavior in normal healthy adults under fasting conditions. A trial (NCT04686461) of

thymoquinone extract is underway to investigate its effects against arsenical keratosis. In this trial, TQ-loaded topical

ointment was used to treat 34 patients with arsenical keratosis at two-week intervals. The TQ ointment formulation was

found to reduce the keratotic nodular size as well as improvement of the lesion calculated using the Likert Scale.

Table 6. Some recent thymoquinone clinical trials.
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S.N Clinical Trial ID Title Trial
Status

Age and
Patient
Inclusion
Criteria

Intervention Conditions Sponsor Target
Size Source

1 NCT03208790

Clinical and
immunohistochemical

evaluation of the
cancer

chemopreventive
effect of

thymoquinone
compared to placebo

on oral potentially
malignant lesions

among an Egyptian
population: a

randomized clinical
trial

Phase 2

18–25 years
Patients with
any known
potentially
malignant

lesion
confirmed

histologically

100 mg
200 mg

Placebo oral
capsule

Premalignant
Lesion

Cairo University,
Egypt 81 https://clinicaltrials.gov/show/NCT03208790;

accessed on 12 January 2021

2 IRCT2016100914106N5

Preparation of oral
gel-made from

thymoquinone (TQ),
and a clinical study

investigating the
efficacy of it on

patients with aphtha

2

Patient
possessing
aphthous

ulcer

 
Recurrent
Aphthous
Stomatitis

Kermanshah
University of

Medical
Science, Iran

56 http://en.irct.ir/trial/13800; accessed on 12 January
2021

3 IRCT2016021826637N1

Evaluation effect of
mucoadhesive NS in

the treatment of
chronic periodontitis

2

Patients who
had not

undertaken
periodontal
therapy in
the past 3
months

Mucoadhesive
Locally

Delivery NS
extract 0.2%

and
Thymoquinone

0.02%.

Chronic
periodontitis

The ethics
committee of
Kermanshah
University of

Medical
Science, Iran

20 http://en.irct.ir/trial/22014; accessed on 12 January
2021

4 NCT03776448

The effect of 2 g daily
supplementation of

thymoquinone -
containing sativa
nigra oil on blood
glucose levels of
adults: a placebo-
controlled double-

blinded randomized
controlled trial

N/A

18–60 years
of regular
Student or
Faculty in

Sulaiman Al
Rajhi

Colleges

18–60 years Diabetes
mellitus

Sulaiman Al
Rajhi Colleges,
Saudi Arabia

30 https://clinicaltrials.gov/show/NCT03776448;
accessed on 12 January 2021

5 CTRI/2018/11/016334

A randomized, open-
label, prospective,
three-arm, parallel,

multicenter study to
evaluate efficacy and
safety of metformin

with/without
concomitant

administration of
thymoquinone in

patients with type 2
diabetes mellitus.

2

Patients aged
18–65 years
with type 2
diabetes

mellitus and
(BMI)

between 18–
30 kg per

meter square

 
Type 2 diabetes
mellitus without
complications

Intas
Pharmaceuticals

Ltd., India
60 http://www.ctri.nic.in/Clinicaltrials/pmaindet2.php?

trialid=28562; accessed on 12 January 2021

6 CTRI/2020/05/025167

Evaluation of efficacy
and safety of

thymoquinone
compared to best
supportive care in

patients with covid-19

Phase 2

Confirmed
COVID-19

patient
(either sex)
aged 18–65

years

50 mg tablet
for 14 days as
an add-on to

best
supportive as
per guidelines

of clinical
management
of COVID-19
as issued by

MOHFW

RR < 20, HR <
90, oxygen
saturation

(pulse oximetry)
>93% on room
air at screening

Intas
Pharmaceuticals

Ltd., India
100

http://ctri.nic.in/Clinicaltrials/showallp.php?
mid1=43378&EncHid=&userName=thymoquinone;

accessed on 12 January 2021



6. Conclusions and Prospects

TQ is a molecule that has multifaceted modes of action, including anti-arthritic and antineoplastic activities through

modulating inflammatory and apoptotic pathways. However, its biological instability, rapid metabolism, poor water

solubility, narrow bioavailability, inadequate cellular availability, and lack of targeting halt its transition from research to

clinical application. Extensive literature analysis revealed that nanotechnology upgraded drug delivery patterns in cancer

and arthritic disease through significant improvement in pharmacokinetics and target-oriented active molecule delivery

while decreasing their off-target side effects. To maintain the biological stability of TQ during formulation design or delivery

alone, site-specific availability is among the major challenges to utilizing its maximum therapeutic potential in arthritis and

cancer management.

The role of TQ individually and its diverse types of nanoformulations for targeted delivery to tumorigenic cells and synovial

tissues, with longer circulating time and higher synovial accumulation, improved anti-inflammatory and anticancer

potential. The nanoformulation delivery of TQ results in significantly enhanced targeting payload and promising upgrades

to its anti-inflammatory and anticancer efficacy.

Nanoparticles are emerging carrier systems for the delivery of a wide range of therapeutic molecules. NPs are extremely

attractive due to their important properties (size surface area and charge). Their use, as a drug carrier system or in

theranostic applications including personalized medicine, might pave the way for a future strategy of prevention and

counteraction of multiple diseases.

In this review, we vitally analyzed and reported the possible mechanistic approach of thymoquinone, such as the

downregulation of various cytokines, inflammatory factors, and apoptotic pathways for the management of rheumatoid

arthritis and cancer. Moreover, their toxicity reduction potential was also reported. An extensive review of their patent and

clinical trials worldwide was also reported.

With the deep dive that we undertook in this review, it was revealed that formulations can transform the applicability of the

nano carrier-based formulation of thymoquinone; however, these studies can be dynamic. Significant dots in research

have been recognized that need to be connected: various pre-clinical and human trials are taking place worldwide to

ascertain the applicability of thymoquinone in humans; there are a lack of comparative findings on various

nanoformulations to optimize the best regimen for TQ delivery against rheumatoid arthritis and cancer; the non-availability

of toxicity/safety data for thymoquinone-loaded NPs and human studies specifically exploring the pharmaceutical

importance of nanoparticulate systems on arthritic and cancer milieu.
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