
Computer Modeling of the Heart
Subjects: Cardiac & Cardiovascular Systems

Contributor: Axel Loewe

Computer modeling of the electrophysiology of the heart has undergone significant progress. A healthy heart can be

modeled starting from the ion channels via the spread of a depolarization wave on a realistic geometry of the human heart

up to the potentials on the body surface and the ECG.
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1. Introduction

This article reviews research aimed at building a bridge between computerized modeling of the electrophysiology of the

human heart and the analysis of the electrocardiogram (ECG). Potential applications of computer modeling for better

interpretation of the ECG are demonstrated and an outlook for further research is given.

The research field of computerized modeling of the electrophysiology of the heart has reached a mature state. The

healthy heart can be replicated in a computer model with various degrees of detail, starting with the ion channels and

ending with the spread of a depolarization wave through the atria and the ventricles. Several diseases have been the

focus of this research but many open questions remain: modeling can only be as good as our basic understanding of the

pathologies of the heart.

On the other hand, after more than 100 years of ECG interpretation, the clinical knowledge about ECG and what it can tell

us about cardiac diseases has reached an expert level. Most often, this knowledge is based on personal experience or

empirical studies and only coarse attempts are made to relate a decisive feature in the ECG to its pathological origin

inside the heart. The classical heart vector is a valuable tool for understanding the general shape of the ECG, but it is not

good enough to follow details of the spatial spread of de- and repolarization.

It is astounding that the number of articles where modeling of the heart is extended to the calculation of the ECG and

where this is used for better ECG interpretation is limited. Table 1 shows the result of a literature survey.

Table 1. Literature survey of research about modeling of the heart together with the corresponding ECG.

Topic Modeling Challenge References

healthy heart—QRS modeling the Purkinje tree

healthy heart—T-wave modeling heterogeneity of repolarization

healthy heart—P-wave modeling sinus node excitation and pathways from right to left
atrium, anatomical variability

ischemia and infarction modeling the effect of hyperkalemia, acidosis, hypoxia and cell-to-
cell uncoupling

ventricular ectopic beats localization with 12-lead ECG

ventricular tachycardia localization of exit points with 12-lead ECG

cardiomyopathy modeling typical changes of QRS- and T-wave

bundle branch blocks LBBB
and RBBB modeling asynchrony

atrial ectopic beats localization with 12-lead ECG

atrial tachycardia, flutter modeling all types of flutter

atrial fibrillation and fibrosis modeling fibrosis and its distribution
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Topic Modeling Challenge References

genetic diseases modeling LQT, SQT, Brugada

imbalance of electrolytes hyper- and hypokalemia and hyper- and hypocalcemia

drug-induced changes effect of various channel blockers

Methods for calculation of the ECG (and the body surface potential map, BSPM) from the source distribution in the heart

have been described in several articles. The main differences between the approaches are (a) the cellular models and

their parameters, (b) the method to calculate the spread of depolarization (bidomain, monodomain, eikonal, reaction

eikonal) and (c) the method of forward calculation (finite difference, finite element, boundary element methods;

homogeneous torso versus different organs considered). The forward problem is obviously related to the inverse problem

of ECG as used in ECG imaging (ECGi). Thus, all articles dealing with fast and realistic methods of calculating the lead

field matrix that maps the sources in the heart to the body surface ECG are related to the topic of this article but are not

discussed in detail.

Published in 2004, the software package ECGSim allows for a fast and easy relation of source patterns on the heart to the

corresponding 12-lead ECG. The user can modify local activation times, repolarization times and the slope of the

transmembrane voltage . Thus, these source distributions can be realistic or not—no model of excitation spread is

running in the background. Meanwhile, advanced software packages to simulate the electrophysiology of the heart are

available: openCARP , acCELLerate , FEniCS , Chaste , propag-5 , and LifeV . They all have been

verified in an N-version benchmark activity initiated by Niederer .

The literature survey yielded several articles that do not focus on a specific disease but rather deal with the general

concept of calculating the ECG from computer models of the heart. Lyon et al. gave an outline of a computational pipeline,

listed examples of modeling diseases together with the ECG and showed up several applications of modeling in ECG

interpretation . Potse suggested a fast method for realistic ECG simulation without oversimplifying the torso model by

using a lead-field approach . Building upon this approach, Pezzuto et al. found an even faster method that allows for

implementation on a general-purpose graphic processing unit (GPGPU) . Keller et al. investigated the influence of

tissue conductivities on the resulting ECG . Schuler et al.  found a way to downsample the fine grid necessary for

calculating the spread of depolarization for the forward calculation of the ECG—further reducing calculation time. Neic et

al. developed a reaction eikonal algorithm that simulates the spread of depolarization very fast and still delivers realistic

ECGs .

Calculation times for computing the spread of depolarization and repolarization, the lead field matrix and the body surface

potentials including the ECG strongly depend on the methods employed: highly detailed cell models versus simplified

phenomenological models, high versus low spatial resolutions, etc. They can range from one day down to one second. As

an example, the calculation times of the P-waves shown in Figure 1 were 27 h for the full bidomain model and the

Courtemanche cell model, 1 h and 24 min for a pseudo-bidomain model and 40 min for a monodomain simulation (heart

mesh with 4.7 million elements and 920 k nodes, desktop computer with 12 cores at 1.4 GHz). Fast calculation times are

important for the researcher aiming at the identification of new features in the ECG, for creating a training dataset for

machine learning and for personalization of a heart model. They are not relevant any more if, for example, a machine

learning algorithm is finally used in clinics.
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Figure 1. Simulated P-waves of the 12-lead ECG with various atrial shapes, several orientations of the atria inside the

torso and a variety of body shapes. The colors represent the total atrial volume in blue, the torso size in red and the

orientation angle around the medial-lateral axis in orange .

2. Modeling the ECG of a Healthy Heart
2.1. The QRS Complex and the Purkinje Tree

The morphology of the QRS complex is strongly determined by the topology of the His-Purkinje system in the ventricular

subendocardial layer . An earlier approach to fit a Punkinje network model to a measured ECG was published by Keller

et al. in 2009 . In total, 744 Purkinje muscle junctions were distributed across the ventricular endocardial surface

following specific rules. Other publications followed this scheme and implemented “root points” coupled to thin endocardial

layers with very fast conduction . Automatic and reproducible manipulation of root node locations is facilitated by

chamber-specific coordinate systems . Mincholé et al. investigated the impact of anatomical variability on

simulated QRS complexes . They found that QRS duration is mainly determined by myocardial volume and not affected

by the position of the heart in the torso. The latter influences QRS morphology in the precordial leads, whereas ventricular

anatomy dominates in the limb leads. Cranford et al. carried out a sensitivity study: they implemented 1 to 4 “seed stimuli”

and up to 384 “regional stimuli” and observed the changes in the QRS complex while changing the number and topology

of excitation sites . The topology of four seed stimuli at adapted positions was more relevant than a large number of

regional stimuli. Pezzuto et al. were able to reproduce the QRS complex of 11 patients using up to 11 of the earliest

activation sites on the endocardium and adapted the conduction velocity in the ventricles and in a fast endocardial layer

. Gillette et al. proposed a comprehensive workflow to optimize the positioning of five root disks, timing, and endocardial

conduction velocities (10 parameters) to reproduce the QRS complex with a personalized model .

The healthy QRS complex can be reproduced faithfully, meaning that adapted heart models show an ECG with high

correlation to measured ECGs. This does not prove that the modeled spread of depolarization is the one present in the

patient, but it is good to see that there are no inconsistencies. Some relevant questions are: Which parameters in the

model are responsible for the natural variability of QRS complexes—both inter- and intra-patient wise ? Is the heart

axis that is visible in the ECG mainly determined by the geometrical axis of the heart or by the properties of the His-

Purkinje system? Which simplifications of the thorax model are acceptable and where do we need detailed models?

2.2. The T-Wave and the Repolarization

Modeling the T-wave is a challenging task. If all myocytes in the ventricles would follow the same action potential, the T-

wave would have the opposite sign as the R-peak. Heterogeneity is a necessary condition for concordant T-waves. Keller

et al. investigated various schemes of heterogeneity of the 

repolarization current (transmural, apico-basal, left–right) and found that both transmural and apico-basal gradients can

lead to realistic T-waves, whereas a pure left–right heterogeneity creates a notch in the T-wave . Even though the focus

of an article of Bukhari et al. was on the changes in the T-wave during dialysis, this article also reported on the

heterogeneity that is needed to obtain a realistic T-wave in healthy hearts. They assume a solely transmural dispersion of

ion channel conductivities . Xue et al. analyzed how transmural and apico-basal heterogeneities change the

morphology of the T-wave. They concluded that mainly apico-basal gradients contribute to a positive T-Wave . The

modeled heterogeneity scenarios are informed by experimental cellular data . However, the available data do not allow

us to draw definite conclusions and different heterogeneity patterns can lead to the similar T-wave morphologies.

While contraction of the heart happens only after the P-wave and the early QRS complex, it can influence the source

distribution during the repolarization. How the contraction of the heart affects the morphology of the simulated T-wave was

investigated by Moss et al. They observed an 8% increase in amplitude and a shift of the T-wave peak by 7 ms .

2.3. The P-Wave

A review about computerized modeling of the atria including the corresponding ECG was given by Doessel et al. in 2012

. Krueger et al. were the first to set up an atrial model that included realistic fiber orientation . They also

investigated the influence of atrial heterogeneities on the morphology of the P-wave, created personalized models and

compared the ECGs of several patients .

The contribution of the left and right atria to the P-wave was analyzed by Loewe et al.  and Jacquemet et al. . Even

in the last third of the P-wave, one-third of the signal stems from the right atrium . Potse et al. discovered that a jigging

morphology of the P-wave, which was observed in computer simulations, was not an artefact but could be observed in a

[50]

[2]

[1]

[3]

[79][80][81]

[6]

[5]

[7]

[8]

[4][6]

[11]

[13]

[10]

[82]

[12]

[15] [14][83]

[16]

[17] [18]

[17]



similar way in healthy volunteers when carefully preventing smoothing through filtering or averaging . Loewe et al.

investigated the influence of the earliest site of activation in the right atrium (i.e., the sinus node exit site) on the

morphology of the P-wave  and could demonstrate that small shifts in the earliest excitation site and its proximity to the

inter-atrial connections can significantly change the terminal phase of the P-wave. Andlauer et al. dissected the differential

effects of atrial dilation and hypertrophy on the morphology of the P-wave  and showed that left atrial dilation did not

influence P-wave duration significantly, but instead had a strong effect on P-wave amplitude and thus P-wave Terminal

Force in lead V1 (PTF-V1).

A literature survey of simulations of the P-wave and in particular of the P-wave in patients suffering from paroxysmal atrial

fibrillation (AFib) was published by Filos et al. . All the effects described in the literature that have an influence on the

morphology of the P-wave of AFib patients are outlined. Despite the very large number of articles, we conclude that there

is still a way to go before these results can be routinely used in clinical practice.

Nagel et al. analyzed the inter- and intra-patient variability of the P-wave in the Physionet ECG database, aiming at the

optimization of a simulated database of P-waves . Figure 1 shows several examples of P-waves with various atrial

shapes, several orientations of the atria inside the torso and a variety of body shapes.

2.4. Modeling Rhythmic Features and Heart Rate Variability

Modeling of a heart beat most often starts with a stimulation either from an area around the sinus node (atria) or from the

model of the Purkinje tree. Modeling of the sinus node is an interesting research topic that goes beyond the scope of this

article.

The ECG fluctuates from beat to beat even in the healthy state. Both the RR interval and also the morphology of the P-,

QRS- and T-wave are not completely periodic. The fluctuations of the RR interval are well known and analyzed by means

of heart rate variability (HRV), as reviewed by Rajendra et al. . HRV is high in normal hearts and low when there is a

cardiac problem. The variation in the beat-to-beat RR interval is usually studied in both the time domain and frequency

domain. Not many clinicians make use of this measure in daily clinical practice. On the modeling side, only few articles

describe simulations of beta-adrenergic and vagal tones on the sinus node . It seems as if there is still a “missing link”

between computerized modeling of the heart and HRV interpretation .

2.5. Modeling Inter- and Intra-Patient Variability

The variety of ECG morphologies observed in a cohort of healthy humans is large. This can be explained by different

geometries of the heart  , different rotation inside the thorax , and different shapes of the torso. Moreover, differences

in electrophysiology also contribute to the variability (see, for example, the discussion about the QRS morphology and the

Purkinje tree in Section 2.1).

As already mentioned in Section 2.3, Nagel et al. investigated the inter- and intra-patient variability of the P-wave . The

beat-to-beat variability of the P-wave in case of atrial fibrillation was investigated by Pezzuto et al. . Already small

variations (1 to 5 mm) in the location of the earliest activation site lead to changes in the morphology of the P-wave. This

effect was significantly enhanced if slow conducting regions were near the earliest activation site.

3. Modeling Diseases and the Corresponding ECG
3.1. Ischemia and Infarction

Loewe at al. gave an outline of how computer modeling can support comprehension of cardiac ischemia and discussed

the link to the corresponding ECG . Figure 2 shows several examples of ischemic regions together with the

corresponding ECG. The parameters of the ten Tusscher–Panfilov cell model which reflect the degree and temporal stage

of the occlusion were summarized by Wilhelms et al. . They considered the cellular effects due to hyperkalemia,

acidosis and hypoxia as well as due to cellular uncoupling. After clarifying the origin of ST-segment elevation (and

depression), they also demonstrated how several ischemic scenarios will not show any ST-segment change . Thus,

they were able to explain the large group of non-ST-segment elevation myocardial infarctions (NSTEMI). Potyagaylo et al.

showed that these scenarios are not only electrically but also magnetically “silent” . Loewe at al.—using computer

modeling—investigated whether additional electrodes, optimized electrode placement or improved analysis of the ST

segment could lead to better diagnosis of patients with acute ischemia. They suggest the deviation from baseline at the K-

point as being superior to J-point analysis .
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Figure 2. Examples of ischemic regions with varying transmural extent due to occlusion of the left anterior descending

coronary artery and the related levels of hyperkalemia, acidosis, and hypoxia (A). ECG lead V4 for ischemia of varying

transmural extent in temporal stage 2 (B) and varying duration of a transmural ischemia (C). Ventricular transmembrane

voltage and body surface potential distribution during the action potential plateau (t = 200 ms) for ischemia of varying

transmural extent in stage 2 (D). The QRS complex was not optimized in this study. (Images reproduced with permission

from .)

Ledezma et al. created populations of control and ischemic cell strands and observed the corresponding pseudo-ECGs

(which is the voltage between two virtual electrodes at or near to the ends of a tissue strand immersed in an infinite

homogeneous volume conductor). Based on these data, they trained an artificial neural network that was able to

determine severity (mild or severe) and size of the ischemic region from the pseudo-ECG .

All these articles deal with ischemia and “fresh” infarctions (not older than a couple of hours). The modeling of “old”

infarction scars seems to be straightforward: the scar areas cannot depolarize, they should be “switched off” during

modeling. Basically. the QRS complex will change. In particular, small bridges of viable tissue within a scar area are of

interest since they are likely to lead to ventricular tachycardia (VT). Lopez-Perez et al. were able to set up a personalized

model of a patient with an old infarction with strong emphasis on modeling border zones. They were able to reproduce the

12-lead ECG of a patient with a history of infarction both in sinus rhythm and during VT .

Electrocardiographic imaging of myocardial infarction was the subject of the Challenge of the Computing in Cardiology

conference in 2007. BSPMs of patients were provided for the participants. Ghasemi et al. were very successful in finding

the location and extent of the infarction using only the heart vector and a very simplified model of the distribution of

depolarization during systole . Farina et al. employed a model-based approach to solve the task  and also reached

very good results; however, based on the full BSPM. Jiang et al. investigated the best electrode arrangements to localize

an infarcted area in the heart . A dense set of electrodes including and extending the precordial leads was essential.

Optimal results were obtained when using at least 64 electrodes.

3.2. Ventricular Ectopic Beats and Extrasystoles

The localization of ventricular ectopic beats (premature ventricular contractions, PVCs) is a major topic of the inverse

problem of ECG. Any knowledge about the site of origin can guide the cardiologist during an ablation procedure and thus

shorten the duration of the invasive procedure. Many publications contain chapters on calculating the body surface

potential map of ventricular ectopic beats using simulations of the spread of depolarization (see, for example, Potyagaylo

et al. ). Most of them assume that the individual body shape and cardiac geometry is known, which is, however, not the

setting of traditional ECG analysis.

Figure 3 shows, as an example, a fast simulation of the spread of depolarization (transmembrane voltage and epicardial

potentials) and the corresponding 12-lead ECG for three different ventricular extrasystoles.
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Figure 3. Modeling of ectopic beats and the corresponding ECG: for three different trigger locations in the right ventricle

(RV) and left ventricle (LV), the transmembrane voltage (left column), the extracellular potentials (middle column) and

corresponding ECGs (right column) are shown. Excitation propagation was computed by solving the anisotropic Eikonal

equation.
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