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 Quantitative parameters of FDG-PET, such as SUV and TLG have been used to evaluate therapeutic response. Recent

advancement in anti-cancer therapeutics showed that tumor response to molecular-targeted drugs and immune-

checkpoint inhibitors is different from conventional chemotherapy in terms of temporal metabolic alteration and

morphological change after the course of effective therapy. Metabolic changes and temporal enlargement due to immune

cell infiltration seen after immune-checkpoint inhibitors, such as anti-programmed cell death-1 (PD-1) and anti-

programmed cell death ligand 1 (PD-L1) antibodies facilitated the modification of conventional Response Evaluation

Criteria in Solid Tumor and FDG-PET response evaluation criteria. Tumor microenvironment including cancer stem cells

(CSCs) that is thought to be a root cause of tumor heterogeneity; is considered a target of novel and effective therapy. 

 Accumulation of FDG reflects glucose metabolism of both cancer cells and immunologically competent cells in the tumor

microenvironment. Immunological reaction to the therapy differs among patients according to the individual immune

function. Considering the heterogeneity of tumor tissue and individual variation in tumor response to immunotherapy,

radiomics approach combines quantitative image features with deep learning algorithm have the potentials to improve

response assessment in more personalized treatment. 

 Stromal cell-derived factor 1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4)-targeted α-particle therapy has been

introduced, because SDF-1/CXCR4 axis is known to increase epithelial-mesenchymal transition to facilitate invasion and

metastasis, and regulate immune response by accelerating T cell proliferation as well as PD-1 and PD-L1 expression in

cancer cells and cytotoxic T lymphocytes, respectively. Prominent energy profile and biological effect of α-particles are

promising as an alternative in targeted radionuclide therapy (TRT). Radiation dosimetry according to the theranostics

approach will permit accurate TRT and artificial intelligence-based treatment decision making and precise response

evaluation would be a precision nuclear medicine in the future.
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1. Introduction

Positron emission tomography (PET) has become an indispensable procedure for the initial assessment and post-

therapeutic evaluation in clinical oncology, using dedicated radiopharmaceuticals targeting cellular metabolism and tumor-

specific receptors . PET as a means of molecular-based imaging is able to characterize biological processes associated

with disease progression and therapeutic response quantitatively at the cellular and molecular levels. The outcome of a

therapy cannot be interpreted properly without a surrogate biomarker to assess the efficacy of every therapeutic modality.

Therapeutic response is objectively evaluable by means of imaging. Conventional response evaluation criteria use

morphological parameters; on the other hand, 2-[ F] fluoro-2-deoxy-d-glucose (FDG)-PET-based criteria use metabolic

parameters. Histological response to anti-cancer therapy depends on the therapeutic modalities; cancer immunotherapy

shows the distinctive phenomenon of immune-related tumor responses. Emerging observational data of immune-related

response patterns have determined modification of the conventional response criteria. The current approaches to anti-

cancer therapy target the tumor microenvironment as well as anti-tumor immunity.

2. Glucose Metabolism of Cancer and FDG-PET

It has been appreciated for nearly 100 years that cancer cells are metabolically distinct from other cells. All cells

fundamentally require nutrients to meet metabolic demands for energy generation and biosynthesis. Metabolic demands

of cell proliferation, differentiation, and biosynthesis of proteins, lipids, and nucleotides are different in tumor cells.
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Elevated glucose uptake and cellular metabolism were thought to be the biochemical characteristics of cancer . FDG-

PET could disclose a high glycolytic rate and pyruvate oxidation in the mitochondria, depending on the cell proliferation.

These altered metabolisms, including metabolic switch from aerobic to anaerobic glycolysis, are known as the Warburg

effect . The function of the Warburg effect has been simply understood as a metabolic switch, but a breakthrough to

explain the Warburg effect regarding cancer metabolism in vivo has taken place recently .

Tumor hypoxia is known to be the most important factor to account for biological aggressiveness and resistance to

chemotherapy and radiotherapy through the expression of multidrug resistance 1 (MDR1) and cell cycle arrest .

Accelerated proliferation and metabolism of cancer cells lead to an imbalance in the form of insufficient oxygen supply in

relation to oxygen demand in solid tumors . Anti-neoplastic drugs and ionizing radiation have effects on oxygen to

generate reactive oxygen species (ROS) in cancer cells, causing oxidative stress, which results in apoptosis. However,

cancer cells can survive in the hypoxic area, which is usually seen at 100 μm from tumor vessels, because of the

decreased generation of ROS . In the area of hypoxia, a transcription factor, hypoxia-inducible factor 1 (HIF-1), is

activated to induce the expression of various genes responsible for adaption to hypoxic metabolism from oxidative

phosphorylation to glycolytic ATP production, explained by the Warburg effect, as mentioned above , invasion and

metastases of cancer cells through the formation of pre-metabolic niche and epithelial–mesenchymal transition (EMT) to

escape from hypoxia , increased erythropoiesis through upregulation of erythropoietin, and angiogenesis to

reoxygenation of hypoxic area . An α-subunit of HIF-1 (HIF-1α) induces expression of glucose transporter 1 and

glycolytic enzymes to increase glucose uptake and anaerobic glycolysis to compensate for ATP production . FDG-

PET can therefore evaluate tumor aggressiveness and resistance to chemotherapy and radiotherapy by detecting

increased glucose metabolism and is a possible therapeutic marker to monitor responses.

3. Machine Learning for Imaging Cancer Heterogeneity and Interpretation

Figure 1 shows FDG-PET/CT images of a patient with NSCLC. Two foci of increased nodular FDG uptake are seen in the

upper lobe of the right lung and the upper mediastinum on the left side. These lesions show SUVmax of 7.2 and 4.8,

respectively. Do these images provide the radiologist with sufficient information for correct interpretation? Radiologists

cannot diagnose correctly without additional information about clinical history, because every radiologist knows that the

most common sites of metastasis of lung cancer are ipsilateral hilar and mediastinal lymph nodes and that metastasis to

the contralateral mediastinal lymph node usually occurs after ipsilateral mediastinal lymph nodes metastases .

Information about past history of left lung cancer with T3N1M0, stage IIIA, for which left upper lobe segmentectomy and

lymph node dissection was performed 2 years before, is a clue for correct diagnosis. The patient had undergone surgery

followed by chemotherapy on the basis of correct diagnosis. How accurately can FDG-PET images estimate the efficacy

of chemotherapy and prognosis of this patient? Do quantitative parameters help to predict response to chemotherapy and

prognosis?
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Figure 1. 2-[ F] fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (FDG-PET/CT) of

patients with non-small cell lung cancer. (a) Maximum intense projection image shows abnormal FDG uptake in the left

upper mediastinum (arrow) and the right lung (arrowhead). (b) PET/CT shows increased FDG uptake in the lymph node

adjacent to the left subclavian artery at the level of the upper mediastinum (arrow). (c) High FDG uptake is seen in the

nodule at the right upper lobe (arrow head).

Considering the heterogeneity of tumor tissue, more sophisticated indexes surpassing SUV and other parameters as well

as diagnostic algorithms are needed to accurately classify the tumor on the basis of biological malignancy, effectiveness

of various types of therapy, and prognosis of patients. Recent advancements in computer science and artificial intelligence

(AI) have shown the possibility for machine learning systems to take on the practice of radiology, which was previously

thought to be limited to human radiologists. AI including machine learning technologies has the potential to transform

radiological imaging by using the vast amount of clinical data including pathologic and genetic examinations to automate

the integrated diagnostic radiology workflow and diagnosis. Machine learning algorithms, such as random forests, support

vector machines, and artificial neural networks, have been used for classification of images by training with input data set

and knowledge, and then the best model is applied for the prediction of pathophysiology. Due to deep learning and

convolutional neural networks (CNN), the capability to learn and master given tasks to perform computer-aided diagnosis

(CAD) has made remarkable advances in clinical radiology in the past decade . Wang et al. have suggested that the

performance of CNN from FDG PET/CT images is comparable to the best classical machine learning and human

radiologists and that CNN is more convenient and objective than the classical methods, because it does not need tumor

segmentation, feature selection, or texture features for classifying mediastinal lymph node metastasis in patients with

NSCLC . They also suggested that the performance of the CNN would be improved by incorporating diagnostic

features like SUV and tumor size . For example, in mediastinal lymph node metastasis in patients with NSCLC,

accurate diagnosis is a challenge, as indicated in Figure 1; however, lymph node metastasis evaluated by FDG uptake

has been reported to be prognostic as compared with pathological lymph node metastasis . Therefore, diagnosis of

lymph node status during diagnostic work up is of the utmost importance.

Machine learning is already being applied in the practice of radiology, including in the field of mammography. There have

been many papers describing a performance level in lesion detection similar to that of experienced radiologists .

CAD was approved by the Food and Drug Administration (FDA) and has been used for mammography in radiology

practices ; however, improvement of the diagnostic ability has not been satisfactory, and the majority of radiologists

have rarely changed their reports as a result of findings generated by CAD . Machine learning has been reported

to be unlikely to replace radiologists but will provide quantitative tools to increase the value of imaging as a biomarker

including therapeutic response evaluation . Recently, radiology professionals have reminded that AI algorithms must be

as safe and effective as the physician by rigorous testing, longitudinal surveillance, and investigation of oversight

mechanisms to ensure generalizability across patients as well as variable imaging and imaging protocols . However,

radiologists cannot disregard autonomous radiology AI, because AI can tirelessly improve the image reading capacity and

may drastically acquire interpretation capabilities if AI can incorporate available medical information and contextual

integration of data that would typically be identified during physician interpretation in order to render a medical judgement.

On the basis of considering tumor heterogeneity, texture analysis has been explored, especially in the field of nuclear

medicine . The most exciting part of machine learning in medical imaging would be to extract patterns that

are beyond human perception and classification due to the application of deep learning for diagnostic algorithms .

Radiologists should seek to work alongside AI in the future.

4. Response Evaluation of Novel Therapeutics with Molecular Imaging

Malignant cells survive in a complex balance in the immune system. Both CTLA-4 and PD-1 suppress T cell activities.

Therefore, agents that block CTLA-4, PD-1, and PD-L1 are able to produce an anti-tumor response through immune

activation. Inhibition of CXCR4 exaggerates the anti-tumor immune response and CXCR4-targeted therapy is a possible

therapeutic option to eradicate CSCs. Recent studies have indicated that dual blockade of PD-1–PD-L1 and CXCL-12–

CXCR4 pathways reduces specific cellular and functional elements within the immunosuppressive tumor

microenvironment and augments tumor-specific cell-mediated immune responses. The complexity of these interactions

and heterogeneity of immune cells in the tumor microenvironment are challenges in the development and the evaluation

of the therapeutic efficacy of new immune therapies in vivo. Imaging of immune cells that are major players in anti-cancer

therapy is challenging because many subtypes of cells exist and play different roles in the tumor microenvironment.

Non-invasive evaluation procedures for therapy outcomes, such as biomarkers and molecular imaging, are expected to

represent precise strategies of cancer therapy. FDG-PET can play an important role in fulfilling this purpose, as mentioned

earlier . Uptake of FDG reflects the viability of cancer cells and all other players of the immune system in the
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microenvironment. No uptake of FDG means complete remission of the tumor; however, increased uptake does not

always indicate progression of the tumor, because of the pseudoprogression phenomenon and increased anaerobic

glycolysis in the therapy-induced hypoxia, as mentioned above . Cancer cell-specific imaging has the potential to

evaluate quantitatively the residual cancer cells that had been able to evade anti-cancer agent of immune response.

However, phenotypic changes due to genetic alteration, such as therapy resistant mutation and de novo mutation after

therapy, may decrease specificity to the specific imaging agent. Metabolism-based PET tracers other than FDG can be

used to evaluate therapeutic efficacy . However, metabolic diversity and instability, especially those acquired on the

progression course or after therapy, of cancer cells would be sources of inaccuracy in evaluating the response.

Prediction and evaluation of therapeutic efficacy would be possible with a tumor-specific PET tracer. Prostate-specific

membrane antigen (PSMA) ligand labeled with gallium-68 ( Ga-PSMA) is a PET tracer used to determine the eligibility

for PSMA-targeted radionuclide therapy with Lu-PSMA or Ac-PSMA (Table 1). Peptide receptor radionuclide therapy

for neuroendocrine carcinoma with Y- and Lu-dodecane-tetraacetic acid-Tyr -octreotate (DOTA-TATE) is another

radionuclide therapy performed successfully for solid tumors. Ga-DOTA-TATE is a diagnostic counterpart of

therapeutics. These examples are representative theranostics in nuclear medicine practice that will be followed by the

future radionuclide therapy. A major role of specific imaging in the theranostics is to confirm the indication of therapy.

Another role would be dosimetry analysis to determine the therapeutic dose by calculating absorbed doses in the tumor

for efficacy and target organs for toxicity. It may be possible for PET imaging with specific tracers to evaluate therapeutic

efficacy by measuring the amount of target molecules; however, the expression of the target molecules may change after

the therapy—then, accurate response evaluation would be difficult with these target-specific PET studies.

Table 1. Representative Pair of Radiopharmaceuticals for Theranostics.

Radiopharmaceutical for Therapy Radiation Half-
Life Radiopharmaceutical for Diagnosis

Lu-DOTA-TATE Beta ray (β  particle) 78 h Ga-DOTA-TATE

Bi-DOTA-TOC Alpha ray (He  particle) 0.76 h Ga-DOTA-TOC

Lu-PSMA Beta ray (β  particle) 78 h Ga-PSMA

Ac-PSMA Alpha ray (He  particle) 10 d Ga-PSMA

DOTA-TATE: dodecane-tetraacetic acid-Tyr -octreotate; DOTA-TOC: dodecane-tetraacetic acid-D-Phe -Tyr -octreotide;

PSMA: prostate-specific membrane antigen.

Considering the present availability and required standardization, FDG-PET may be favorable for response evaluation in

solid tumors. Since there is a variety of therapeutics that have effects on both cancer cells and the immune system,

individualized evaluation criteria based on therapeutic agents and clinicopathologic information may be appropriate.

Clinicopathologic data include therapeutic regimen and time from administration, immune function status, temporal

changes in size and attenuation of tumor on CT, and pathological parameters, such as proliferation, invasion,

differentiation, vascularity, and interstitial findings. These data as well as image features and quantitative indices like SUV

and MTV of PET are subjected to artificial intelligence (AI) for radiomics analysis. Other available data such as MRI and

contrast enhancement are welcome by AI for more detailed analyses.

Modalities used in the clinical setting include PET and single photon emission computed tomography, as well as MRI and

ultrasonography. Optical imaging, such as fluorescence and bioluminescence imaging, plays an important role in

preclinical settings; however, penetration of these signals is too shallow to detect labeled immune cells in clinical

situations, and currently used contrast materials, such as gadolinium based agents, super paramagnetic iron oxide, and

perfluorocarbon labeled with fluorine-19, for MRI are non-specific for immune cells. Therefore, nuclear medicine imaging

is a possible procedure to elucidate anti-cancer immune responses . Cell tracking of particular cell subsets would be

done by radiolabeling in vitro prior to re-administration or by injecting a radiopharmaceutical that binds to a specific

membrane antigen in vivo . There have been many radiopharmaceuticals for cell tracking; however, none of these

have been successfully used in clinical practice so far (Table 2).

Table 2. Potential Radiopharmaceuticals to Image Immune Cells and Cell Tracking.
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Target Radiolabeling Agent Application/Mechanism References

T lymphocytes

In-oxine, Zr-oxine Tumor infiltration

F-FDG Cytokine production

SPIO  

NK cells

In-oxine, Zr-oxine Tumor infiltration

F-FDG, C-methyl
iodide NK cell homing

SPIO  

Macrophages

In-oxine, Zr-
nanoparticles Tumor infiltration

F-FDG Tumor-associated macrophages

SPIO, F-perfluorocarbon  

Interleukin-2 Iodine-123, Technetium-99
m, Fluorine-18 Interleukin-2 receptors on T cells

Anti-CD8 cys-
diabody Zirconium-89, Copper-64 CD8  T cells

Anti-CD8 mAb

PK11195 Carbon-11 Tumor-associated macrophages,
Translocator protein

Anti-TCR mAb Copper-64 Tumor infiltration of T cells

Anti-CD56 mAb Technetium-99 m NK cells

F-FDG: 2-[ F] fluoro-2-deoxy-d-glucose; SPIO: super paramagnetic iron oxide; TCR: T cell receptor; mAb: monoclonal

antibody.

4. Conclusions

Quantitative parameters of FDG-PET, such as SUV and TLG, have been used to evaluate therapeutic responses.

Metabolic changes and temporal enlargement due to immune cell infiltration seen after immune checkpoint inhibitors, anti-

PD-1, and anti-PD-L1 antibodies facilitate the modification of FDG-PET response evaluation criteria as well as

conventional RECIST. Dynamic interaction between cancer and immune cells, CSCs, and metabolism of cancer cells in

the tumor microenvironment are promising targets to eradicate cancer. Accumulation of FDG reflects glucose metabolism

of both cancer cells and immunologically competent cells in the tumor. Considering inter- and intra-patient tumor

heterogeneity, immunological reaction to the therapy differs among patients according to the individual immune function

and tumor heterogeneity. This limits the use of current response evaluation criteria and the revised ones may not be

relevant enough for use in the clinical setting. Then, imaging of immune cells tracking may be crucial but is still a

challenge, due to the fact that radiopharmaceuticals or MRI probes which are highly specific for biomarkers expressed in

different immune cells are not likely to be determined. A radiomics approach which combines quantitative image features

and deep learning algorithms has the potential to improve response assessment on the basis of elucidating pathologic

mechanisms in more personalized treatments in the era of precision nuclear medicine. Multimodal imaging to highlight

new therapeutic biomarkers in the complexed tumor response may be required to improve the management of cancer

patients.
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