

Animal Models for Human Neurodegenerative Diseases

Subjects: **Biochemistry & Molecular Biology**

Contributor: Hong Cao

Animal models of human neurodegenerative disease have been investigated for several decades. In recent years, zebrafish (*Danio rerio*) and medaka (*Oryzias latipes*) have become popular in pathogenic and therapeutic studies about human neurodegenerative diseases due to their small size, the optical clarity of embryos, their fast development, and their suitability to large-scale therapeutic screening.

zebrafish

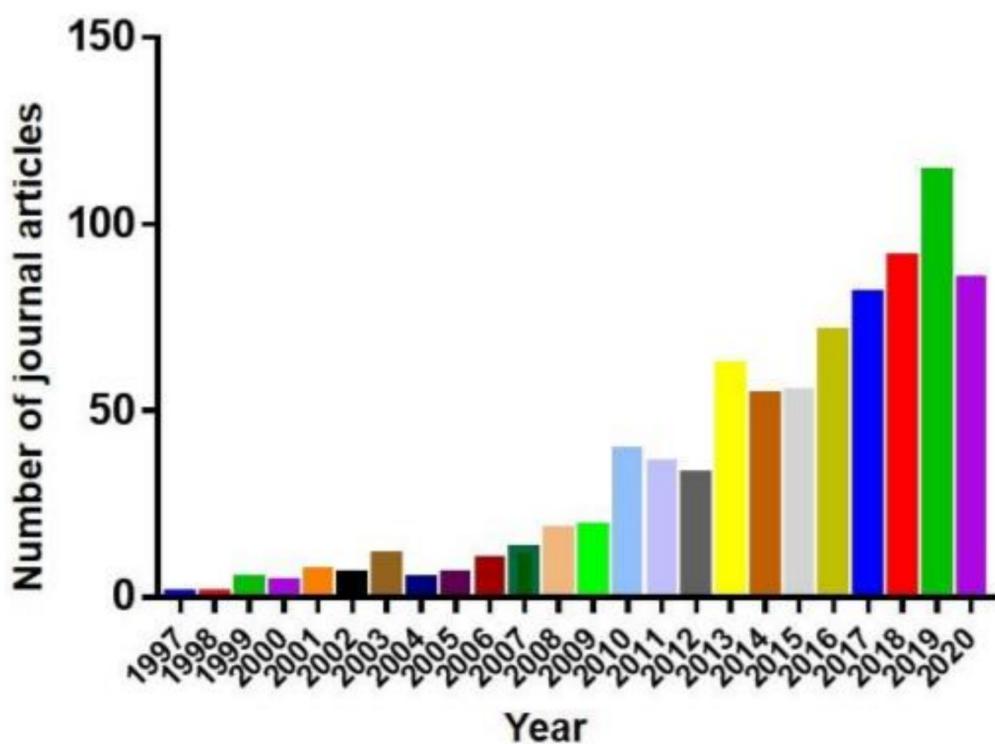
medaka

disease models

neurodegenerative

1. Introduction

Neurodegenerative diseases are a major threat to human health. With the increase in the elderly population, these age-dependent diseases are becoming increasingly prevalent [\[1\]](#). These disorders are devastating to families, and they represent a huge burden for society. Hence, it is urgent to develop novel and more effective therapeutic strategies to remedy these diseases. Animal models were confirmed as a useful tool to investigate the complex mechanisms of neurodegenerative diseases.


Over the past several decades, animal models, such as mice, monkeys, dogs, pigs, fruit flies, and fish, have contributed greatly to our understanding of the genetic basis of the cellular and molecular mechanisms behind neurodegenerative diseases [\[2\]](#)[\[3\]](#)[\[4\]](#)[\[5\]](#)[\[6\]](#). In particular, small fish such as zebrafish (*Danio rerio*) and medaka (*Oryzias latipes*) offer several advantages as model organisms for human neurodegenerative disease studies and drug discovery. Due to their relatively small size and short lifespan, they require less space and are more cost-efficient for laboratory maintenance compared with other vertebrate model organisms, such as the mouse. In addition, they have very high fecundity, and their embryos are transparent during development, which facilitates the non-invasive visualization of its development, and complex mechanisms of neurodegeneration can be analysed more rapidly than in mouse and other vertebrate animal models [\[7\]](#)[\[8\]](#)[\[9\]](#)[\[10\]](#)[\[11\]](#).

Finally, drugs can be administered by intraperitoneal injection or oral gavage in adult zebrafish [\[12\]](#) or medaka [\[13\]](#), whereas in larvae or embryos, they are always administered by adding them to the water and drug solution [\[14\]](#). Due to their small size, they can be easily treated in the 24-well plate, 96-well plate, or 10-cm Petri dish. This facilitates subsequent analysis of phenotypes after drug treatment. Therefore, all these characteristics make them suitable for large-scale and high-throughput drug screening scans.

On the other hand, the identity of nucleotide or amino acid sequences between zebrafish and human homologues is approximately 71% [15], which is much higher than some invertebrate animal models such as roundworms (*Caenorhabditis elegans*) (30–60%) [16] and fruit flies (*Drosophila melanogaster*) (40%) [17]. Notably, zebrafish possess a vertebrate neural structural organisation, and all of the major structures are similar to the mammalian brain. Furthermore, zebrafish also possesses a functional Blood–Brain Barrier (BBB), similar to humans [18]. Many important neurotransmitters were detected in the neurotransmitter profile of zebrafish, which is very important for neuroscientific studies [19].

Although the zebrafish is the most widely used fish model globally, medaka is also used extensively, especially in Europe and Asia [20]. Compared with the zebrafish, the embryos of medaka tolerate a wider temperature range (4–35 °C until the onset of heartbeat and 18–35 °C thereafter, compared to 25–33 °C in zebrafish) [11][21]. This provides great convenience in screens for isolation of low temperature-sensitive gene mutations and the manipulation of developmental rates [11]. In addition, medaka has a long history as a genetic model system. Therefore, a lot of inbred strains from different populations with a high degree of genetic polymorphism are available. This facilitates the generation of high-resolution genetic maps and the genetic analysis of monogenic traits and quantitative trait loci [21].

Therefore, all these factors make zebrafish and medaka of great value in studies of neurodegenerative diseases [22]. As a result, the publications in PubMed using zebrafish, the more popular model of the two, as the neurodegenerative disease model increased sharply in recent years (**Figure 1**).

Figure 1. Absolute number of articles for zebrafish neurodegenerative diseases model per year of publication extracted from the PubMed database.

2. Parkinson's Disease Models

Parkinson's disease (PD) is one of the most common neurodegenerative diseases that affects the motor system. Surveys, medical records, and death certificates demonstrate that the prevalence of PD has notably increased worldwide in recent years, possibly due to the growing elderly population worldwide [23][24][25]. The prevalence of PD was approximately 8.52 million and the incidence was 1.02 million in 2017 globally [26], whereas approximately 0.34 million people died from PD in 2017 globally [27]. It is predicted that the number of cases will reach 12 million by 2050 [28]. In spite of extensive studies that focus on the epidemiology and possible treatments of PD, its pathogenic mechanism has not been fully elucidated, and there is still no effective therapeutic strategy to cure this disease [29]. Compared with some traditional mammal models such as mice, zebrafish and medaka have comparative advantages for the pathological research of PD due to their short life cycles and high fecundity, which makes them particularly suitable for large scale drug screening [14][30][31][32]. In addition, as vertebrate species, zebrafish and medaka have higher genetic similarity to humans than invertebrate model animals such as roundworms and fruit flies [15][16][17][20]. In this review, we summarize several studies of PD in zebrafish, focusing on those published in recent years (Table 1) and several studies of PD in medaka. We discuss two main types of models: neurotoxin-induced and genetic models.

Table 1. Zebrafish models of Parkinson's disease.

Method	Phenotype	Results	Reference
MPTP induced	Motor impairments and weakened touch sensory	Reduction of locomotor activity and dopaminergic neuron, over-expression of synuclein in the optic tectum	[33][34] [35][36]
6-OHDA induced	Motor impairments and anxiety	Reduction of dopaminergic neurons and morphological alternations	[37][38] [39][40]
Paraquat induced	Motor impairments, various developmental anomalies	The paraquat-treated zebrafish did not recapitulate PD pathology	[41][42] [43][44]
Rotenone induced	Motor impairments, anxiety, and olfactory dysfunction	In addition to motor impairments, they also show Olfactory dysfunction, which is a typical non-motor symptom of PD	[45][46] [47][48]

Method	Phenotype	Results	Reference
<i>PARK2</i> Morpholino	No abnormalities in swimming behavior	Loss of the DA neuron numbers in the diencephalon, whereas no abnormalities in swimming behavior	[49][50]
<i>PINK1</i> Morpholino; Transgenes	Motor impairment and oxidative stress	Reduction of dopaminergic neurons, dis-organized diencephalic dopaminergic neurons, and the <i>pink1</i> gene are sensitive markers of oxidative stress in zebrafish	[51][52]
<i>LRRK2</i> Morpholino	Motor impairment	Loss of neuronal cells and synuclein aggregation, similar to the phenotype of PD in humans	[53][54] [55][56]
<i>PARK7</i> Morpholino; <i>CRISPR/Cas9</i>	Motor impairment	With aging, exhibit lower TH levels, respiratory failure in skeletal muscle, and lower body mass, particularly in the male fish	[57][58] [59][60]
<i>Synuclein</i> Transgenes	Motor impairment	Led to cell death in larval zebrafish sensory neurons	[61]
<i>GBA</i> TALEN	Motor impairment	Reduction of the GBA protein, dopaminergic, and noradrenergic neurons	[62][63]
<i>PARKL</i> Morpholino; <i>CRISPR/Cas9</i>	Motor impairment and olfactory dysfunction	Reduced DA neuronal population and dysregulation of the PINK1/Parkin mitophagy pathway	[64][65]

1. Heemels, M.T. Neurodegenerative diseases. *Nature* 2016, 539, 179.

2. Gitler, A.D.; Dhillon, P.; Shorter, J. Neurodegenerative disease: Models, mechanisms, and a new hope. *Dis. Models Mech.* 2017, 10, 499–502.

Method	Phenotype	Results	Reference
induced			1076, [82]
MnCl ₂	Cognition and exploratory behavior	Impairment of aversive long-term memory and distance traveled	[82]
induced		movement time	[82]
<i>MAPT</i>	Motor impairment	The phenotypic abnormalities at larval stages make it suitable for high-throughput screening	V. The human
Transgenes			[83][84]
<i>PSEN1</i>			01–310.
ENU-mutagenized	Motor impairment	Regulation of histaminergic neuron development	[85]
<i>BACE1/2</i>			4–278.
zinc finger nuclease; ENU-mutagenized	Hypomyelination, supernumerary neuromasts, and abnormal pigmentation	Bace1 and Bace2 are proteases with different physiological functions	[86]
			Study
			cca,

W.A.; Mielke, M.M. Survival and Causes of Death among People with Clinically Diagnosed Synucleinopathies with Parkinsonism: A Population-Based Study. *JAMA Neurol.* 2017, **74**, 839–846.

4. Huntington's Disease Models

25. Darweesh, S.I.E.; Raphael, R.G.; Brundin, P.; Matthews, H.; Wyse, R.K.; Chen, H.; Bloem, B.R. Parkinson Matters. *J. Parkinsons Dis.* 2018, **8**, 495–498.

Huntington's disease (HD) is an autosomal dominant, incurable, and fatal neurodegenerative disorder. Initially, HD patients display excessive movements of the limbs and face, and then gradually progress to exaggerated body movements described as chorea. Patients exhibit progressive symptoms, such as psychiatric, cognitive, and motor dysfunction, and this disease is usually lethal 10–20 years after the onset [87][88][89]. HD is caused by an expansion of the polyglutamine coding region in the N-terminus of the huntingtin protein (HTT) [90]. HTT is a 350 kDa protein that is ubiquitously expressed, evolutionarily conserved, and likely to be involved in many cellular processes [91][92].

[93]. However, the precise mechanisms underlying the functions of the HTT gene remain incompletely understood.

27. Roth, G.A.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abasari, N.; Abbasabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, Regional, and National Age-Sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. *Lancet* 2018, **392**, 1736–1788.

The zebrafish HTT protein consists of 3121 amino acids and shares 70% identity with the human HTT orthologue [94]. Compared with the HTT-null mutation mice [92], HTT-null mutation zebrafish are viable, so the zebrafish is believed to be a suitable model to study the mechanisms of HD. To investigate the roles of HTT, several previous

28. Paliogianni, M. *And the burden of Parkinson's disease? A worldwide perspective*. *Neurosci. Biobehav. Rev.* **2018**, *85*, [\[95\]](#) [\[96\]](#)

29. 17, 928–929 revealed that HTT-deficient zebrafish had hypochromic blood because of the decrease in hemoglobin production, despite the presence of iron within blood cells, and speculated that the disturbance of HTT's normal function in the iron pathway leads to HD pathology and especially to its neuronal specificity [\[95\]](#). By Management of Parkinson's Disease for General Neurologists. *Parkinson's Dis.* **2020**, *2020*, 9131474.

30. Hoo, J.Y.; Kumari, Y.; Shaikh, M.F.; Huo, S.M.; Goh, B.H. *Zebrafish: A Versatile Animal Model for Fertility Research*. *BioMed Res. Int.* **2016**, *2016*, 9732780 [\[96\]](#). Another study of the morpholino-based HTT loss-of-function zebrafish observed massive apoptosis of neuronal cells, accompanied by impaired neuronal development, small eyes and heads, and the enlargement of brain ventricles. Interestingly, it was observed that the expression of brain-derived neurotrophic factor (BDNF) was reduced. Notably, treatment of HTT-MO zebrafish embryos with exogenous BDNF rescued these defects, which suggests that increasing the BDNF expression might be a useful strategy for HD treatment [\[91\]](#).

31. Rahman Khan, F.; Sulaiman Alnawamni, S. *Zebrafish (*Danio rerio*) as a Model Organism*. *Curr. Trends Cancer Manag.* **2019**, *2019*, 81517.

32. Matsui, H.; Takahashi, R. *Parkinson's disease pathogenesis from the viewpoint of small fish models*. *J. Neural Transm.* **2018**, *125*, 25–33.

33. Barnhill, L.M.; Murata, H.; Bronstein, J.M. *Studying the pathophysiology of Parkinson's disease using zebrafish*. *Biomedicines* **2020**, *8*, 8070197.

34. Lam, C.S.; Korzh, V.; Strahle, U. *Zebrafish embryos are susceptible to the dopaminergic GFP (Q102-GFP) in zebrafish and found an accumulation of this mutant protein in large SDS-insoluble inclusions neurotoxin MPTP*. *Eur. J. Neurosci.* **2005**, *21*, 1758–1762.

35. Vaz, R.L.; Freeman, J. *Chemical and genotypic zebrafish models to define the mechanisms of dopa*. *Mol. Cell. Mol. Biol.* **2020**, *21*, 55081.

36. Sarath, B.N.; Murthy, C.H.L.; Kakara, S.; Sharma, R.; Brahmendra, S.C.V.; Idris, M.M. *1-Methyl-4-proteins Hsp40 and Hsp70. Importantly, by the use of this HD transgenic model, two inhibitors of the Q102-GFP phenyl-1,2,3,6-tetrahydro-pyridine induced Parkinson's disease in zebrafish*. *Proteomics* **2016**, *16*, 1407–1420.

37. Vijayandhan, V.; Lim, F.; Lim, S.; Mipong, G.M.; Tan, M.P.; Maged, A.; Ramasamy, K. *Identify novel autophagy and aging pathways in zebrafish (Type 2 diabetes and aging, the N17 amino acid* *Neuroregeneration Neurotox. Res.* **2017**, *32*, 496–508.

38. Vaz, R.L.; Sousa, S.; Chapela, D.; van der Linde, H.C.; Willemsen, R.; Correia, A.D.; Outeiro, T.F.; Alonso, N.D. *Identification of antiparkinsonian drugs in the 6-hydroxydopamine zebrafish model*. *Pharmacol. Biochem. Behav.* **2020**, *189*, 172828.

39. Li, M.; Zhou, Y.; Xu, T.; Song, H.; Lin, B. *Acteoside protects against 6-OHDA-induced 17 amino acids (N17) dopaminergic neuron damage via Nrf2-ARE signaling pathway*. *Food Chem. Toxicol.* **2018**, *118*, 6–13.

40. Cronin, A.; Grealy, M. *Neuroprotective and neuro-restorative effects of minocycline and rasagiline in a zebrafish 6-hydroxydopamine model of Parkinson's disease*. *Neuroscience* **2017**, *367*, 34–46.

41. Wang, X.H.; Souders, C.L.; Zhao, Y.H.; Martyniuk, C.J. *Paraquat affects mitochondrial bioenergetics, dopamine system expression, and locomotor activity in zebrafish (*Danio rerio*)*. *Chemosphere* **2018**, *191*, 106–117.

5. Other Neurodegenerative Disease Models

window of dopamine neurogenesis. *Toxicol. Rep.* 2015, 2, 950–956.

In addition to the above studies, zebrafish and medaka were also used in the investigation of some other rare neurodegenerative disorders. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by progressive muscle weakness and eventual death, primarily due to respiratory failure. The most prevalent genetic cause of ALS and frontotemporal dementia (FTD) is a hexanucleotide repeat

Explainer, (HRE) Nutritional Fast Meozesh, CG, Marjorie A. T., Leishnerger, J., Gassner, A. Grifish lines to expression of 72 BIRE. First, GIMe quadruples the Amfaderm, Ringer, Sodium, Selenite, Proteins, neu Paroxysmal nocturnal hematuria, the fish has Mole Nedrobiol 2018, 55, 21928 F194 patients. Moreover,

this stable transgenic model represents a powerful potential for the screening of therapeutic compounds [104]. In 45. LV, D.J.; LI, L.X.; Chen, J.; Wei, S.Z.; Wang, F.; Hu, H.; Xie, A.M.; Liu, C.F. Sleep deprivation another study, several transgenic C9orf72-associated repeat zebrafish lines were generated by TOL2-mediated caused a memory defects and emotional changes in a rotenone-based zebrafish model of transposition. These models confirm the poly-GA toxicity in zebrafish. The reduction of poly-GA protein rescues Parkinson's disease. *Behav. Brain Res.* 2019, **372**, 112031.

toxicity, indicating its potential therapeutic value to treat C9orf72 repeat expansion carriers [105]. Conversely, Yeh et al. [106] reported that the C9orf72 repeat expansion in zebrafish models did not induce neurodegeneration.

47. Ünal, I., Ustundag, U.V., Ates, P.S., Egilmez, G., Alturfa, A.A., Yigitbas, T., Emekli Altunhan, E. Rotenone impairs oxidant/antioxidant balance both in brain and intestines in zebrafish. *Int. J. Neurosci.* 2019, **129**, 363–368.

48. Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson's disease and its potential as a therapeutic target. *Trans. Neurodegener.* 2015;4:40–42.

49. Ge, P.; Dawson, V.L.; Dawson, T.M. **PINK1 and Parkin mitochondrial quality control: A source of regional vulnerability in Parkinson's disease**. *Mol Neurodegener*. 2020; 15: 7. Based on the same model, Namikawa et al. reported an SCA13-triggered cell-autonomous PC degeneration, which results in

the same model, Nishikawa et al. reported an SCA13-triggered cell-autonomous PC degeneration, which results in 50. Flinn, L.; Mortiboys, H.; Volkmann, K.; Kster, R.W.; Ingham, P.W.; Bandmann, O. Complex I eye movement deficits [109](#). In a previous study in our lab, we constructed an *NPC1* knock-out zebrafish model deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (*Danio rerio*). Brain using the CRISPR/Cas9-mediated technology [110](#). This model developed symptoms similar to those observed in 2009, 132, 1613–1623.

The Saito, *et al.*, [110] have demonstrated, in the zebrafish, the neurological character of Dopaminergic neurons (as established in ratability to the potential knockdown zebrafish, the molecular mechanisms of APR93-101.

52. Xi, Y.; Ryan, J.; Noble, S.; Yu, M.; Yilbas, A.E.; Ekker, M. Impaired dopaminergic neuron development and locomotor function in zebrafish with loss of *pink1* function. *Eur. J. Neurosci.* 2010, **31**, 623–633.

53. **Short QM₁ Aletyrosineuria in a mouse model of human tyrosinase-related protein 2 (TRP-2) deficiency and its functional and developmental implications and implications for the aGCase activity in the GBA^{-/-} mouse models.** Biochim. Biophys. Acta. 2012;180:1035-1045.

54. Prabhu desai, S.; Bensabour, EZ.; Abdullah, R.; Basak, I.; Baez, S.; Alves, G.; Holtzman, N.G.; pathological progression [III](#).

neuronal loss, and synuclein aggregation. *J. Neurosci. Res.* 2016, **94**, 17–35.

55. Sheng, D.; Qu, D.; Kwok, K.H.; Ng, S.S.; Lim, A.Y.; Aw, S.S.; Lee, C.W.; Sung, W.K.; Tan, E.K.; Lufkin, T.; et al. Deletion of the WD40 domain of LRRK2 in Zebrafish causes Parkinsonism-like loss of neurons and locomotive defect. *PLoS Genet.* 2010, **6**, e1000914.

56. Seegobin, S.P.; Heaton, G.R.; Liang, D.; Choi, I.; Blanca Ramirez, M.; Tang, B.; Yue, Z. Progress in LRRK2-Associated Parkinson's Disease Animal Models. *Front. Neurosci.* 2020, **14**, 674.

57. Hughes, G.L.; Lones, M.A.; Bedder, M.; Currie, P.D.; Smith, S.L.; Pownall, M.E. Machine learning discriminates a movement disorder in a zebrafish model of Parkinson's disease. *Dis. Model Mech.* 2020, **13**, dmm045815.

58. Bai, Q.; Mullett, S.J.; Garver, J.A.; Hinkle, D.A.; Burton, E.A. Zebrafish DJ-1 is evolutionarily conserved and expressed in dopaminergic neurons. *Brain Res.* 2006, **1113**, 33–44.

59. Bretaud, S.; Allen, C.; Ingham, P.W.; Bandmann, O. p53-dependent neuronal cell death in a DJ-1-deficient zebrafish model of Parkinson's disease. *J. Neurochem.* 2007, **100**, 1626–1635.

60. Edson, A.J.; Hushagen, H.A.; Frøyset, A.K.; Elda, I.; Khan, E.A.; Di Stefano, A.; Fladmark, K.E. Dysregulation in the Brain Protein Profile of Zebrafish Lacking the Parkinson's Disease-Related Protein DJ-1. *Mol. Neurobiol.* 2019, **56**, 8306–8322.

61. O'Donnell, K.C.; Lulla, A.; Stahl, M.C.; Wheat, N.D.; Bronstein, J.M.; Sagasti, A. Axon degeneration and PGC-1a-mediated protection in a zebrafish model of α -synuclein toxicity. *Dis. Models Mech.* 2014, **7**, 571–582.

62. Keatinge, M.; Bui, H.; Menke, A.; Chen, Y.C.; Sokol, A.M.; Bai, Q.; Ellett, F.; Da Costa, M.; Burke, D.; Gegg, M.; et al. Glucocerebrosidase 1 deficient Danio rerio mirror key pathological aspects of human Gaucher disease and provide evidence of early microglial activation preceding alpha-synuclein-independent neuronal cell death. *Hum. Mol. Genet.* 2015, **24**, 6640–6652.

63. Matsui, H.; Ito, J.; Matsui, N.; Uechi, T.; Onodera, O.; Kakita, A. Cytosolic dsDNA of mitochondrial origin induces cytotoxicity and neurodegeneration in cellular and zebrafish models of Parkinson's disease. *Nat. Commun.* 2021, **12**, 3101.

64. Noble, S.; Ismail, A.; Godoy, R.; Xi, Y.; Ekker, M. Zebrafish Parla- and Parlb-deficiency affects dopaminergic neuron patterning and embryonic survival. *J. Neurochem.* 2012, **122**, 196–207.

65. Merhi, R.; Kalyn, M.; Zhu-Pawlowsky, A.; Ekker, M. Loss of parla Function Results in Inactivity, Olfactory Impairment, and Dopamine Neuron Loss in Zebrafish. *Biomedicines* 2021, **9**, 205.

66. Alzheimer's Association. 2020 Alzheimer's disease facts and figures. *Alzheimer's Dement.* 2020, **16**, 391–460.

67. Alzheimer's Disease International. World Alzheimer Report 2019: Attitudes to Dementia; Alzheimer's Disease International (ADI): London, UK, 2019.

68. Vaz, M.; Silvestre, S. Alzheimer's disease: Recent treatment strategies. *Eur. J. Pharmacol.* 2020, 887, 173554.

69. Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer's Disease: Causes and Treatment. *Molecules* 2020, 25, 5789.

70. Cummings, J.L.; Cohen, S.; van Dyck, C.H.; Brody, M.; Curtis, C.; Cho, W.; Ward, M.; Friesenhahn, M.; Rabe, C.; Brunstein, F.; et al. ABBY: A phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. *Neurology* 2018, 90, e1889–e1897.

71. Alzheimer's Association. 2018 Alzheimer's disease facts and figures. *Alzheimers Dement.* 2018, 14, 367–429.

72. Ruhl, T.; Jonas, A.; Seidel, N.I.; Prinz, N.; Albayram, O.; Bilkei-Gorzo, A.; von der Emde, G. Oxidation and Cognitive Impairment in the Aging Zebrafish. *Gerontology* 2015, 62, 47–57.

73. Bhattacharai, P.; Thomas, A.K.; Cosacak, M.I.; Papadimitriou, C.; Mashkaryan, V.; Zhang, Y.; Kizil, C. Modeling Amyloid- β 42 Toxicity and Neurodegeneration in Adult Zebrafish Brain. *J. Vis. Exp.* 2017, 128, 56014.

74. Bhattacharai, P.; Thomas, A.K.; Zhang, Y.; Kizil, C. The effects of aging on Amyloid- β 42-induced neurodegeneration and regeneration in adult zebrafish brain. *Neurogenesis* 2017, 4, e1322666.

75. Rudrabhatla, P.; Pant, H.C. Role of protein phosphatase 2A in Alzheimer's disease. *Curr. Alzheimer Res.* 2011, 8, 623–632.

76. Nada, S.E.; Williams, F.E.; Shah, Z.A. Development of a Novel and Robust Pharmacological Model of Okadaic Acid-induced Alzheimer's Disease in Zebrafish. *CNS Neurol. Disord. Drug Targets* 2016, 15, 86–94.

77. Koehler, D.; Williams, F.E. Utilizing zebrafish and okadaic acid to study Alzheimer's disease. *Neural Regen. Res.* 2018, 13, 1538–1541.

78. Muthuraman, A.; Thilagavathi, L.; Jabeen, S.; Ravishankar, S.B.; Ahmed, S.S.; George, T.; Rishitha, N.; Paramakrishnan, N. Curcumin prevents cigarette smoke extract induced cognitive impairment. *Front. Biosci.* 2019, 11, 109–120.

79. Muthuraman, A.; Nafisa, K.; Sowmya, M.S.; Arpitha, B.M.; Choedon, N.; Sandy, C.D.; Rishitha, N.; Johurul, I. Role of ambrisentan (selective endothelin-A receptor antagonist) on cigarette smoke exposure induced cognitive impairment in *Danio rerio*. *Life Sci.* 2019, 222, 133–139.

80. He, X.; Zhong, Z.M.; Che, Y. Locomotor activity and learning and memory abilities in Alzheimer's disease induced by aluminum in an acid environment in zebrafish. *Dongwuxue Yanjiu* 2012, 33, 231–236.

81. Acosta, D.D.S.; Danielle, N.M.; Altenhofen, S.; Lizardo, M.D.; Costa, P.G.; Bianchini, A.; Bonan, C.D.; da Silva, R.S.; Dafre, A.L. Copper at low levels impairs memory of adult zebrafish (*Danio*

rerio) and affects swimming performance of larvae. *Comp. Biochem. Physiol. C Toxicol. Pharmacol.* 2016, 185–186, 122–130.

82. Altenhofen, S.; Wiprich, M.T.; Nery, L.R.; Leite, C.E.; Vianna, M.R.M.R.; Bonan, C.D. Manganese(II) chloride alters behavioral and neurochemical parameters in larvae and adult zebrafish. *Aquat. Toxicol.* 2017, 182, 172–183.

83. Bai, Q.; Garver, J.A.; Hukriede, N.A.; Burton, E.A. Generation of a transgenic zebrafish model of Tauopathy using a novel promoter element derived from the zebrafish eno2 gene. *Nucleic Acids Res.* 2007, 35, 6501–6516.

84. Paquet, D.; Bhat, R.; Sydow, A.; Mandelkow, E.M.; Berg, S.; Hellberg, S.; Fälting, J.; Distel, M.; Köster, R.W.; Schmid, B.; et al. A zebrafish model of tauopathy allows *in vivo* imaging of neuronal cell death and drug evaluation. *J. Clin. Investig.* 2009, 119, 1382–1395.

85. Sundvik, M.; Chen, Y.C.; Panula, P. Presenilin1 regulates histamine neuron development and behavior in zebrafish, *danio rerio*. *J. Neurosci.* 2013, 33, 1589–1597.

86. van Bebber, F.; Hruscha, A.; Willem, M.; Schmid, B.; Haass, C. Loss of Bace2 in zebrafish affects melanocyte migration and is distinct from Bace1 knock out phenotypes. *J. Neurochem.* 2013, 127, 471–481.

87. Shannon, K.M. Huntington's disease—Clinical signs, symptoms, presymptomatic diagnosis, and diagnosis. *Handb. Clin. Neurol.* 2011, 100, 3–13.

88. Ross, C.A.; Aylward, E.H.; Wild, E.J.; Langbehn, D.R.; Long, J.D.; Warner, J.H.; Scahill, R.I.; Leavitt, B.R.; Stout, J.C.; Paulsen, J.S.; et al. Huntington disease: Natural history, biomarkers and prospects for therapeutics. *Nat. Rev. Neurol.* 2014, 10, 204–216.

89. Walker, F.O. Huntington's disease. *Lancet* 2007, 369, 218–228.

90. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. *Cell* 1993, 72, 971–983.

91. Duyao, M.P.; Auerbach, A.B.; Ryan, A.; Persichetti, F.; Barnes, G.T.; McNeil, S.M.; Ge, P.; Vonsattel, J.P.; Gusella, J.F.; Joyner, A.L.; et al. Inactivation of the mouse Huntington's disease gene homolog Hdh. *Science* 1995, 269, 407–410.

92. Zeitlin, S.; Liu, J.P.; Chapman, D.L.; Papaioannou, V.E.; Efstratiadis, A. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. *Nat. Genet.* 1995, 11, 155–163.

93. Nasir, J.; Floresco, S.B.; O'Kusky, J.R.; Diewert, V.M.; Richman, J.M.; Zeisler, J.; Borowski, A.; Marth, J.D.; Phillips, A.G.; Hayden, M.R. Targeted disruption of the Huntington's disease gene

results in embryonic lethality and behavioral and morphological changes in heterozygotes. *Cell* 1995, 81, 811–823.

94. Karlovich, C.A.; John, R.M.; Ramirez, L.; Stainier, D.Y.; Myers, R.M. Characterization of the Huntington's disease (HD) gene homologue in the zebrafish *Danio rerio*. *Gene* 1998, 217, 117–125.

95. Lumsden, A.L.; Henshall, T.L.; Dayan, S.; Lardelli, M.T.; Richards, R.I. Huntingtin-deficient zebrafish exhibit defects in iron utilization and development. *Hum. Mol. Genet.* 2007, 16, 1905–1920.

96. Henshall, T.L.; Tucker, B.; Lumsden, A.L.; Nornes, S.; Lardelli, M.T.; Richards, R.I. Selective neuronal requirement for huntingtin in the developing zebrafish. *Hum. Mol. Genet.* 2009, 18, 4830–4842.

97. Diekmann, H.; Anichtchik, O.; Fleming, A.; Futter, M.; Goldsmith, P.; Roach, A.; Rubinsztein, D.C. Decreased BDNF levels are a major contributor to the embryonic phenotype of huntingtin knockdown zebrafish. *J. Neurosci.* 2009, 29, 1343–1349.

98. Schiffer, N.W.; Broadley, S.A.; Hirschberger, T.; Tavan, P.; Kretzschmar, H.A.; Giese, A.; Haass, C.; Hartl, F.U.; Schmid, B. Identification of anti-prion compounds as efficient inhibitors of polyglutamine protein aggregation in a zebrafish model. *J. Biol. Chem.* 2007, 282, 9195–9203.

99. Williams, A.; Sarkar, S.; Cuddon, P.; Ttofi, E.K.; Saiki, S.; Siddiqi, F.H.; Jahreiss, L.; Fleming, A.; Pask, D.; Goldsmith, P.; et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. *Nat. Chem. Biol.* 2008, 4, 295–305.

100. Veldman, M.B.; Rios-Galdamez, Y.; Lu, X.H.; Gu, X.; Qin, W.; Li, S.; Yang, X.W.; Lin, S. The N17 domain mitigates nuclear toxicity in a novel zebrafish Huntington's disease model. *Mol. Neurodegener.* 2015, 10, 67.

101. VerPlank, J.J.S.; Tyrkalska, S.D.; Fleming, A.; Rubinsztein, D.C.; Goldberg, A.L. cGMP via PKG activates 26S proteasomes and enhances degradation of proteins, including ones that cause neurodegenerative diseases. *Proc. Natl. Acad. Sci. USA* 2020, 117, 14220–14230.

102. Renton, A.E.; Majounie, E.; Waite, A.; Simon-Sanchez, J.; Rollinson, S.; Gibbs, J.R.; Schymick, J.C.; Laaksovirta, H.; van Swieten, J.C.; Mallykangas, L.; et al. A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. *Neuron* 2011, 72, 257–268.

103. Sullivan, P.M.; Zhou, X.; Robins, A.M.; Paushter, D.H.; Kim, D.; Smolka, M.B.; Hu, F. The ALS/FTD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway. *Acta Neuropathol. Commun.* 2016, 4, 51.

104. Shaw, M.P.; Higginbottom, A.; McGown, A.; Castelli, L.M.; James, E.; Hautbergue, G.M.; Shaw, P.J.; Ramesh, T.M. Stable transgenic C9orf72 zebrafish model key aspects of the ALS/FTD

phenotype and reveal novel pathological features. *Acta Neuropathol. Commun.* 2018, 6, 125.

105. Ohki, Y.; Wenninger-Weinzierl, A.; Hruscha, A.; Asakawa, K.; Kawakami, K.; Haass, C.; Edbauer, D.; Schmid, B. Glycine-alanine dipeptide repeat protein contributes to toxicity in a zebrafish model of C9orf72 associated neurodegeneration. *Mol. Neurodegener.* 2017, 12, 6.

106. Yeh, T.H.; Liu, H.F.; Li, Y.W.; Lu, C.S.; Shih, H.Y.; Chiu, C.C.; Lin, S.J.; Huang, Y.C.; Cheng, Y.C. C9orf72 is essential for neurodevelopment and motility mediated by Cyclin G1. *Exp. Neurol.* 2018, 304, 114–124.

107. McGown, A.; Shaw, D.P.J.; Ramesh, T. ZNStress: A high-throughput drug screening protocol for identification of compounds modulating neuronal stress in the transgenic mutant sod1G93R zebrafish model of amyotrophic lateral sclerosis. *Mol. Neurodegener.* 2016, 11, 56.

108. Namikawa, K.; Dorigo, A.; Zagrebelsky, M.; Russo, G.; Kirmann, T.; Fahr, W.; Dübel, S.; Korte, M.; Köster, R.W. Modeling Neurodegenerative Spinocerebellar Ataxia Type 13 in Zebrafish Using a Purkinje Neuron Specific Tunable Coexpression System. *J. Neurosci.* 2019, 39, 3948–3969.

109. Namikawa, K.; Dorigo, A.; Köster, R.W. Neurological Disease Modelling for Spinocerebellar Ataxia Using Zebrafish. *J. Exp. Neurosci.* 2019, 13, 1179069519880515.

110. Lin, Y.; Cai, X.; Wang, G.; Ouyang, G.; Cao, H. Model construction of Niemann-Pick type C disease in zebrafish. *Biol. Chem.* 2018, 399, 903–910.

111. Uemura, N.; Koike, M.; Ansai, S.; Kinoshita, M.; Ishikawa-Fujiwara, T.; Matsui, H.; Naruse, K.; Sakamoto, N.; Uchiyama, Y.; Todo, T.; et al. Viable neuronopathic Gaucher disease model in Medaka (*Oryzias latipes*) displays axonal accumulation of alpha-synuclein. *PLoS Genet.* 2015, 11, e1005065.

Retrieved from <https://encyclopedia.pub/entry/history/show/36195>