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Protein phosphorylation is a fundamental mechanism for many intracellular processes underlying cell life. This

reversible mechanism, which is triggered by intra- and extra-cellular signals, regulates metabolism, transcription,

proliferation, differentiation, cell movements, and apoptosis in countless cellular functions. Protein kinases form an

enzyme family that catalyzes the transfer of the gamma-phosphate of adenosine triphosphate (ATP) to specific

hydroxyl amino acids in protein substrates. On the other hand, protein phosphatases regulate the action of kinases,

playing the role of regulators in the phosphorylation processes. The present investigation summarize the current

knowledge on the roles playd by phosphatases in Chronic Myeloid Leukemia (CML).

phosphatases  kinases  CML  leukemia  stem cell

1. Introduction

Human protein tyrosine kinases (PTKs) can be categorized into about 60 trans-membrane receptors (PTKRs) and

30 non-receptor classes (PTKNRs) . PTKRs may be activated by specific molecular cues, upon binding to their

extracellular ligand-binding domains. These events usually induce intracellular structural reorganization, increasing

affinity for substrates, and specific sub-cellular localization, to allow for the initiation of intracellular signals . In

contrast, PTKNRs lack transmembrane domains, localize in the cytoplasm, and are characterized by different

domains, including kinase domain (KD), Src homology domains (SH2 and SH3), or other ligand-binding domains

such as phosphotyrosine-binding (PTB) domains, involving tasks such as signals propagation and amplification 

. PTKs have been predominantly implicated in cancer development, although these targets have also been

considered in the treatment of illnesses such as hypertension, Parkinson’s disease, and autoimmune diseases .

Aberrant PTK activation in cancers is currently known to be mediated by four principal molecular mechanisms:

Autocrine stimulation, chromosomal translocations, overexpression of PTKRs, or gain of-function mutations . A

commonly reported example is the juxtaposition of BCR on the ABL1 gene, causing the transduction of BCR-ABL1

fusion protein, a very well-studied state of kinase-alteration. The gene region involved in the translocation may

generate different isoforms of the BCR-ABL1 protein, which are often associated with a specific leukemic

phenotype. Unlike the Src-family kinases, where two specific phosphorylation sites (corresponding to Y416 and

Y527 of the archetype SRC) control the enzyme activity with contrasting effects, the ABL family does not contain an

inhibitory site but, instead, self-inhibited states are regulated by amino-terminal myristoylation of the SH2 and SH3

domains, both contributing to an inactive kinase domain conformation . Moreover, ABL kinase activity depends on

the tyrosine residues located on its structure, which are substrates for phosphorylation events that stabilize the

open-active conformation . In the fused conformation, BCR coiled-coil domains promote intermolecular cross-
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phosphorylation on ABL kinase, enhancing its kinase activity and promoting a constitutive activated tyrosine kinase

. (Figure 1).

Myeloproliferative neoplasms are clonal disorders propagated by transformed hematopoietic stem cells (HSCs).

Chronic myeloid leukemia (CML) is one such disorders, which is characterized by a HSC mutation involving an

exchange of genetic material between chromosomes 9 and 22, usually t(9;22)(q34;q11) traslocation . This

translocation generates a cancer-driving gene known as BCR-ABL1, coding for a dysregulated protein tyrosine

kinase. Over the last 20 years, innovative cures for many common cancer types have been developed based on

therapies targeting tyrosine and serine/threonine kinases. In CML, TKI-based therapy is considered the gold

standard for treatment, having dramatically changed the clinical outcome since the first TKI—imatinib or Glivec

(IM)—was approved for clinical use in 2001 . Since then, numerous efforts have been put forward to counter

various BCR-ABL1 mutations occurring in the active kinase site, with the development of second- and third-

generation TKIs over the past decade . Despite the success of these inhibitors (e.g., Dasatinib, nilotinib, and

bosutinib), even in contrasting the “gatekeeper” T315I mutation (ponatinib), the uncomfortable truth from numerous

clinical trials indicates that the success of TKIs in achieving clinically relevant endpoints is still not optimal ,

suggesting the need to tackle additional mechanisms to achieve what is becoming a foreseeable goal: the

eradication of CML. Meanwhile, further strategies are needed to prolong the survival of leukemia patients who are

resistant or efractory to current chemo- and TKI-based therapies.

Copious evidence has supported the role of kinase oncogenes in cancer development. Nevertheless, there has

been a heightened interest in the pivotal role of specific protein phosphatases in hematological malignant

transformation processes. The human PTPome contain 107 PTPs, which are grouped into four families based on

their catalytic domain amino acid sequence. Unlike protein tyrosine phosphatases (PTPs), proteins with

serine/threonine phosphatase activity are encoded by only 13 genes . However while PTPs are monomers, the

serine/threonine phosphatases (e.g., PP2A) are multimeric and include various regulatory sub-units, resulting in

hundreds of different isoforms, which allows for the substrate specificity necessary to target thousands of

phosphoproteins. The majority of oncogenes identified thus far encode protein kinases, the activity of which is

required for cancer initiation and maintenance. Protein phosphatases (PPs) often counteract the action of protein

kinases by removing phosphate moieties on target proteins . Intuitively, solely considering the

counterbalancing activity of protein kinases, it is possible to consider PPs to act as tumor suppressors; however,

this concept represents an oversimplification. Deregulation of or changes in the expression/activities of

phosphatases might tip the overall cellular homeostasis, establishing one of the mechanisms by which cells escape

external and internal self-limiting signals, thus resulting in altered cellular processes . Although much is known

about the alterations in kinase function in CML disease, the roles of phosphatases in these same processes remain

less defined and represent a matter of great interest, as the recovery of tumor- suppressor function represents a

challenge in cancer treatment. Strengthening our knowledge on the biological aspects of the phosphatases and

their regulation of oncogenic processes in hematological malignancy will allow us to obtain better results in our

understanding of molecular networks.
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Figure 1. Scheme of the protein products

derived from the BCR, ABL1b genes and the fusion product of the BCR-ABL1 oncogene. Major tyrosine

phosphorylation sites are represented together with two well characterized interactors relevant for CML disease.

SH Src homology domain; PTB Phosphotyrosine-binding domains; KD Kinase Domain; PH Pleckstrin homology

domain; BD Binding Domain; FABD f-actin binding domain; CCD Coiled-coil domain.

2. Role of Phosphatases in the Regulation of Cell
Proliferation

In the last three decades, the role of the BCR-ABL1 protein has been extensively analyzed and we have

summarized the main pathways involved in Figure 2. One of the major signaling cascades that is altered involves

the RAS mitogen-activated protein kinase family (MAPKs) , such as ERK1/2, MEK, JNK, and p38 families,

which lead to insensitivity to growth factor stimuli and regulates the proliferative fate of cells . In the active

conformation, BCR-ABL1 possesses several tyrosine sites, such as Y245 in the SH2-kinase linker and Y412 in the

activation loop, which are known to regulate function/activity (Figure 1). The human UBASH3B gene encodes for

STS-1 phosphatase (suppressor of T-cell receptor signaling 1), the high expression of which has been correlated

with the p190 form in acute lymphoblastic leukemia (ALL) patients’ samples , but is usually considered a

BCR-ABL1 interactor . In particular, other than being involved in signaling by other kinases, such as PDGFR,
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ZAP-70, and SYK, it can bind to the SH2–SH3 compartment of BCR-ABL1, producing strong dephosphorylation in

the tyrosine sites of the ABL-portion, thus limiting its kinase activity. Remarkably, a CML-like disease mouse model

with Sts-1/Sts-2 double knockout exacerbated the classical CML parameters and reduced mice survival, providing

evidence supporting the leukemogenic role of Sts-1 . The SH2-domain containing protein growth factor receptor

bound protein-2 (GRB2) recognizes another fundamental Y177 binding site on the BCR domain which

synergistically promotes CML, supporting RAS activation through Son of Sevenless (SOS) a guanine nucleotide

exchange factor protein, and the scaffold adapter GAB2 (GRB2-associated binding protein 2) . BCR-ABL1  cells

harboring a Y177F or SH2-domain mutation on GRB2 have exhibited less leukemogenic transformation and

reduced proliferation by MAPK pathway disruption . A recent study has also suggested that Y177 BCR-ABL1

phosphorylation is also regulated by ERα36-expression, an alternatively spliced variant of estrogen receptor α66

(ERα66), which is abnormally localized in the cytoplasm and cell membrane of BCR-ABL1  cells. Synthetic ERα36

inhibitors prevented GRB2 from binding to BCR-ABL1, generation reduction in the downstream RAS/MAPKs

pathway and cell proliferation impairment . The major SHP2-binding protein in hematopoietic cells, GAB2, is part

of the GRB2/GAB2 complex recruited on phosphorylated Y177. GAB2 is essential for myeloid and lymphoid

leukemogenesis induced by BCR-ABL1, as demonstrated by the failure to develop a CML-like disease in a mouse

model transplanted with BCR-ABL1 in GAB2 marrow cells. Its tyrosine phosphorylation in BCR-ABL1  cells

generates a docking site for signal cascade proteins, such as PI3K sub-unit p85α and SHP2 ; moreover, it

induces the signal events, together with RAS activation, that lead to an increase of ERK function . Downstream

proliferative effects of the MAPKs pathway include transcription factors (TFs) such as NF-κB, CREB, ETS-1, AP-1,

and cMYC, leading to cell cycle progression (involving CDKs) and anti-apoptotic mechanisms (involving BCL-2)

. SHP2 (PTPN11) plays a critical role in cell development due to its ability to support RAS/MAPK signaling, in

response to numerous growth factors . In the hematopoietic compartment, it is considered an oncogene as

point mutations in its N-terminal SH2 inhibitory domain trigger the development of leukemia in different lineages

. An early study performed in CML CD34  cells reported that the cytokine-independent colony formation capacity

was altered by PTPN11-knockdown . In particular, both mRNA and phosphoprotein levels appear to be greater

in myeloid leukemia cells, addressing its presence/activity with a more hyper-proliferative phenotype . Further

evidence has confirmed SHP2 is required to initiate and maintain BCR-ABL1-mediated transformation, as GAB2

mutation in SH2 domain cannot bind SHP2 and, as a result, reduce myeloid and lymphoid leukemic burden. In line

with this observation, various studies have described p-ERK activity reduction in BCR-ABL1 expressing myeloid

cells lacking SHP2 phosphatase, thus emphasizing its role as a positive regulator of the RAS/MEK/ERK1-2

pathway in BCR-ABL1 signaling . Speculation on reduced cell viability in this case may be traced back

to RAS activation which occurs through SOS, but which also requires active SHP2 phosphatase. SHP2 can

dephosphorylate and inactivate the p120 RAS-GAP protein (RAS GTPase-activating protein) by blocking its

antagonistic action on RAS . Although there are also implications for p-AKT-reduction, it seems to be mostly

associated with GAB2 adapter protein impairment. On the other hand, Y177-GAB2 interaction is required to

enforce another key player in leukemic transformation: Phosphoinositide-3 kinase (PI3K)  (see Figure 2).
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Figure 2. Depiction of the BCR-ABL1 kinase-driven proliferative processes in the context of CML. ERK =

Extracellular signal-regulated kinases; MEG3 = Maternally expressed gene 3; PRC2 = Polycomb repressive

complex 2; EZH = Enhancer of zeste polycomb repressive complex sub-unit.

The PI3K/AKT signal pathway plays a crucial role in a great variety of cancers, due to its strong relation with

membrane tyrosine kinase receptors which are activated by multiple extracellular stimuli (cytokines, growth factors,

etc.) . Reportedly, the PI3K lipid kinase consists of p85 (regulatory) and p110 (catalytic) sub-units in a

heterodimeric structure that is involved in inositol lipids (PtdIns(3,4)P2) phosphorylation, usually at the inner leaflet

of the cytoplasmic membrane, initiating and controlling multiple cellular functions . Specifically, PtdIns(3,4,5)P3

provides an anchor point for pleckstrin homology (PH) domain-containing proteins, such as activated protein kinase

(AKT) and phosphoinositide-dependent protein kinase-1 (PDK-1). AKT is a serine/threonine kinase, belonging to

the AGC family kinases, which is expressed in two isoforms in hematopoietic stem cells . Activated p-AKT

following by BCR-ABL1-activated PI3K, is able to inhibit the apoptotic process and support cell proliferation .

Skorski et al. reported the first direct data on PI3K (both sub-units) involvement in CML cell transformation ,

demonstrating how its downstream effector, AKT, was a critical growth regulatory switch in BCR-ABL1-expressing

cells . BCR-ABL1 can directly up-regulate AURK-A and AURK-B (serine/threonine kinases belonging to the

Aurora family) through (at least in part) AKT, emphasizing a further pathway for cell, proliferation . The PI3K

pathway is constitutively activated in CML progenitor cells, as has been demonstrated by the elevated
PtdIns(3,4,5)P3 levels found in CML progenitor cells, compared to their normal counterpart. Normal
levels of PtdIns(3,4,5)P3 were restored, along with their capacity to respond near-normally to
cytokine stimulation, by Imatinib treatment . Many studies on this signaling pathway have been
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deepened in CML biology, thanks to the development of specific inhibitors to curb a wide range of
effectors acting on this leukemia . Notoriously, phosphatase and tensin homologue (PTEN) was
the first tumor suppressor gene found to have a double specific phosphatase activity, acting on
serine/threonine and tyrosine residues and the major antagonist of PI3K signaling, operating as a
tumor suppressor in numerous solid neoplasms and leukemia . By exploring the function of
PTEN in BCR-ABL–expressing Ba/F3 cells, it has been revealed how BCR-ABL1 may induce PTEN
phosphatase downregulation and a reduced p53 protein expression, regaining expression of both
targets after TKI treatment . An explanation was found in Pten gene promoter, where p53 can
bind and promote its expression. Additionally, BCR-ABL1-expressing LSK cells sorted from CML
mice, confirm a reduction of Pten mRNA, which also correlates with the downregulation of p53.
Therefore, reduced disease progression related to PTEN expression could involve the reduction of
CML cell proliferation through cell cycle arrest . The nuclear-cytoplasmic shuttling enables PTEN
to play its proper tumor suppressive function . The mono-ubiquitinated PTEN form is
predominantly nuclear, where it has been shown to play a tumor-suppressive role through a
proliferation control mechanism. Herpesvirus ubiquitin-specific protease (HAUSP) is a critical
modulator of protein ubiquitination, possibly regulating PTEN cytosolic partitioning . In CML, BCR-
ABL1 might phosphorylate HAUSP, triggering PTEN nuclear exclusion and causing proliferative
advantages. Therefore, HAUSP together with nuclear PTEN depict a pivotal pathway in BCR-ABL1-
induced proliferation . In this way, Morotti et al. showed that PTEN-tail phosphorylation, mediated
by BCR-ABL1-activated casein kinase II (CKII), caused a reduction of PTEN phosphatase activity,
thus uncovering another inhibition mechanism present in CML . Many different mechanisms might
regulate PTEN expression in leukemic cells, including epigenetic shutdown, genomic loss,
transcriptional repression, post-transcriptional regulation by lncRNA or microRNAs, etc. Polycomb
repressive complex 2 (PRC2) contains two methyltransferase sub-units called enhancers of zeste 2
polycomb repressive complex subunit 1 and 2 (EZH1 and EZH2) that can modulate chromatin
conformation by adding methyl groups on histone 3 (H3K27me2/3) . EZH2 expression has been
found to be upregulated in all three-phases of the disease in CML LSCs and, in particular, compared
to other PRC2 components, it appears to be BCR-ABL1-kinase activity-dependent; meanwhile,
EZH1 did not follow this trend, but was found to be downregulated . Proliferation, self-renewal
and viability of CML cells were drastically impeded by pharmacological interference with EZH2
activity (GSK126 inhibitor), or by reducing its expression through shRNA or in Ezh2 CML mice,
resulting in increased survival in retroviral BCR-ABL1-transduced mouse models . In addition,
EZH2 knockdown decreased H3K27me3 levels on PTEN gene promoter and resulted in a significant
increase in PTEN mRNA and protein expression in three human Ph  cell lines, as well as in LSK
(Lin /Sca-1 /c-Kit ) cells from CML mice. Zhou et al. demonstrated the EZH2 inhibition-mediated
beneficial effects on leukemia cells and prolonged survival of CML mice were compromised by the
concurrent transduction of shRNA targeting PTEN . Modification of PTEN expression might occur
through maternally expressed gene 3 (MEG3), a long non-coding RNA (lncRNAs) associated with
many cancers which has already been shown to regulate IM resistance in CML . Lower MEG3

[50][51]

[52][53]

[54][55]

[54]

[56]

[57]

[58]

[59]

[60]

[61][62]

−/− 

[61][63]

+

− + +

[63]

[64]



Phosphorylation in Chronic Myeloid Leukemia | Encyclopedia.pub

https://encyclopedia.pub/entry/10385 7/19

levels have been found in advanced stages of leukemia while, to the contrary, miR-21 was found to
be over-expressed which was able to interact with MEG3 by decreasing its expression. The data
indicated that MEG3 binding could modify the expression of MDM2 and EZH2 mRNA levels,
producing DNA (cytosine-5)-methyltransferase 1 (DNMT1) protein upregulation and PTEN protein
downregulation. Therefore, a reduced expression of miR-21 blocked the proliferation and promoted apoptosis of

CML cells . The upregulation of miR-188-5p represents another post-transcriptional regulatory mechanism for

PTEN expression exhibited by CML cells. Indeed, miR-188-5p may directly target PTEN 3′-UTR, thus repressing it.

Zi-Yuan Nie et al. demonstrated how the flavonoid Morin, isolated from Moraceae, might inhibit proliferation and

induce apoptosis by repressing miR-188-5p expression, leading to PTEN/AKT pathway inhibition in CML cells both

in the K562 cell line and mouse xenograft models . Yin et al. obtained relevant data on other epigenetic

modifications produced by the RBP2 protein. In particular, the BCR-ABL1/RBP2/PTEN pathway represents a

feedback loop which is thought to increase proliferation, leading to blast phase (BP) transition. BCR-ABL1 activity

directly inhibits directly RBP2 protein expression, resulting in the inhibition of PTEN transcription. The PTP domain

of PTEN shares similar features with PTP1B phosphatase, presenting the same ability to bind and limit BCR-ABL1

phosphorylation  (Table 1).

Table 1. PPs in CML.

Protein Coding
Gene Role in CML References

Data verified in primary CML cells or in leukemia mouse models

DUSP1 DUSP1 Implicated in TKI-response

STS-1 UBASH3B Decreases cell proliferation
Direct BCR-ABL1 regulation

FAP-1 PTPN13 Regulation of β-catenin functions
Decreases TKI sensitivity

PTPRG PTPRG Regulation of β-catenin functions
Implicated in TKI response

SHP1 PTPN6
Acts through the PP2A on BCR-ABL1
Regulates BCR-ABL1-independent IM
resistance

SHP2 PTPN11 Increases cell proliferation
Implicated in TKI resistance

PP2A PPP2CA Quiescence and Self-renewal regulation
Governs TKI-response

PTEN PTEN Control of cell proliferation
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Protein Coding
Gene Role in CML References

Data obtained only in CML cell lines

PTP1B PTPN1 Reduces cell viability
Correlated with IM response

LAR –LIPRIN
Α1

PPFIA1 Mitigates BCR-ABL1 leukemogenesis

LYP PTPN22 Decreases IM sensitivity

LMW-PTP ACP1 Regulates autophagy process
Correlated with IM resistance

PP1Α PPP1CA Improves cell survival and apoptosis
resistance

TC45/TC48 TC-PTP
Implicated in IM- and INFα-resistance
Regulation of proliferation and
apoptosis
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