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Artificial Intelligence (AI) and Machine Learning (ML) have expanded their utilization in different fields of medicine. During

the SARS-CoV-2 outbreak, AI and ML were also applied for the evaluation and/or implementation of public health

interventions aimed to flatten the epidemiological curve. 
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1. Introduction

During the last five years, the use of Artificial Intelligence (AI) and Machine Learning (ML) rapidly increased its

applications in various areas of medicine . In particular, during the SARS-CoV-2 outbreak, AI and ML were shown to

be effective in improving diagnostic and prognostic processes of COVID-19, although there were limitations due to

potential biases relating to the quality of reporting . AI and ML were also applied to public health issues related to

COVID-19. This included the identification of clinical and social factors associated with the risk of COVID-19 infections

and deaths , the development of spatial risk maps , the prediction of the trends and peak of the epidemic , and

finally, the development of vaccination strategies . For optimizing protection and preventing the spread of COVID-19,

several activities need to be implemented, such as the identification of suspicious events, large-scale screening, tracking,

associations with experimental treatments, pneumonia screening, data and knowledge collection and integration using the

Internet of Intelligent Things (IIoT), resource distribution, robotics for medical quarantine, forecasts, and modeling and

simulation .

In the actual phase of the epidemic, governments are using public health measures such as lockdown, social distancing,

and school closures, etc., to contain the spread of the virus. The effectiveness of such strategies is mainly based on

theoretical assumptions . Moreover, epidemiological models such as Susceptible–Exposed–Infectious–Recovery

(SEIR), stochastic transmission models, etc., that have traditionally been used to study and predict dynamics and possible

contagion scenarios  also had limited application to public health interventions for the COVID-19 pandemic.

2. Control the Spread of COVID-19

Based on our findings, quarantine emerged as the most effective intervention to control the spread of COVID-19 .

China implemented a combination of interventions based on quarantine that also included the implementation of cordon

sanitary measures and traffic restrictions from 23 January 2020 to 16 February 2020. Before the implementation, the Rt

was above 3.0. After the application of the quarantine, on 6 February 2020 the Rt decreased to below 1.0, and on 1 March

2020 the Rt decreased to less than 0.3 . The data of 190 countries worldwide that implemented the quarantine

measures (from 23 January 2020 to 13 April 2020) showed how they were associated with a reduction in Rt when

compared with countries that did not adopt this measure (Rt = −11.40%, 95% CI (−9.07–−13.66%)) .

AI and ML were also applied in the use of lockdown . The results of eleven European countries that implemented a

lockdown between 3 February 2020 and 4 May 2020 showed a reduction in Rt below 1 and a large effect on reducing

transmission . A recent study that ranked the effectiveness of worldwide COVID-19 public health interventions that were

implemented in 79 territories showed that curfews, cancellations of small gatherings and closures of schools, shop and

restaurants were among the effective public health policies . All these results were consistent with the outputs of the

quarantine and lockdown-based AI and ML models .

AI and ML also simulated the adoption of continuously redefining the modification of lockdown measures according to the

spatial (area) risk of the spread of the disease in one area (low, moderate, and high) . This intervention was mainly

used by Western European countries. Additionally, India implemented the same approach during lockdown phase 3 (from
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4 May 2020 to 17 May 2020). After the application of this measure, the Rt decreased from 2.78 to 1.38. In brief, even

though this approach reduced the spread of COVID-19 epidemic progression, it was unable to halt and eventually

eradicate the COVID-19 epidemic .

Social distancing was the last strategy that was evaluated with AI and ML. AI and ML suggested that social distancing

could be effective only in combination with the closure of schools/commercial activities and the limitation of public

transportation . Additionally, from real life data the application of social distancing as a single intervention was not very

successful because case resurgence was likely to occur once it was removed and it did not help to reduce the excess

mortality .

The models used in our study are quite diverse and a few considerations about their characteristics are worthwhile. The

main models considered are the following: SIR/SEIR (Susceptible–Exposed–Infected–Recovered), Linear Regression,

TOPSIS, Neural Networks, Agent-based Simulation.

These models are from very different families of methods, ranging from differential equation models (SIR/SEIR), to

statistical machine learning models (linear regression and neural nets), geometric models (TOPSIS), and, finally,

simulation models (agent-based simulation). A direct comparison is then hard, and the choice of one method with respect

to another one may depend upon several factors, such as the kind of collected data, the availability of analytical tools, and

the contextual situation under which the model can actually be applied. For instance, the SIR family of models, as any

model in system theory (i.e., differential equations), assumes that the modeled system abstracts to some specific

behavior. In particular, in standard SIR, a homogeneous mixing of the infected I and susceptible S populations is

assumed, meaning that a person’s contacts are randomly distributed among all others in the population. However, in real

situations, the mixing in a population is heterogeneous and contacts are usually not random; for example, people of

different ages may have very different kinds of relationships.

Machine learning models do not assume such a kind of abstract behavior, since they try to predict specific patterns of

prediction from data; in other words, they tend to learn the abstract behavior of the system from observations, and they

use what has been learnt to make predictions. However, in this case specific modeling assumptions are also present.

Standard linear regression is a model with very high bias, since it assumes a linear relationship between observed data

and the target; however, the bias can be reduced by adjusting the model to polynomial regression with the introduction of

additional non-linear (Quadratic, Cubic, etc.) parameters. It is well-known that this bias reduction will increase the variance

of the model, leading to the problem of overfitting (the inability of the model to generalize to unobserved data, while being

really accurate on observed data). Regularization techniques (lasso or L2 regularization) can be adopted to reduce

overfitting . Neural networks are more general, since the non-linearity can be captured in the activation functions of the

artificial neurons (usually sigmoid functions such as logistic or hyperbolic tangent, as well as Rectified Linear Unit widely

adopted in deep neural net modes), and overfitting can be mitigated by both suitable architectural choices as well as

regularization. However, the choice of the right set of hyper-parameters of the net (number of neurons, number of hidden

layers, activation functions) and of the learning algorithm (learning rate, momentum, parameter initialization) may have a

great impact on the final model’s performance and must be made by intensive cross-validation procedures.

Geometric models such as TOPSIS more directly address a decision-making process and are quite interesting in a setting

like the one discussed in the present paper, i.e., the evaluation of specific countermeasures to contain the spread of

COVID-19. In particular, TOPSIS belongs to the class of Multiple Attribute Decision Making (MADM) approaches, where

some courses of action are chosen in the presence of multiple, usually conflicting, features. An interesting observation is

that similar approaches have also been investigated in the Machine Learning community with the use of Probabilistic

Graphical Models, such as Decision Networks or Influence Diagrams , but with the possibility of learning both the

structural relationship among the attributes and their quantification in terms of uncertainty (probability) and utility.

Finally, agent-based simulation is a completely different alternative, where no specific modeling is assumed, but the

results are obtained by looking at the interactions among the involved agents. The crucial point is to determine the right

set of simulation parameters, such as the number of agents, the rate of interaction, the probability of infection given by

contacts, etc.

In summary, all the approaches investigated in the different studies have their motivations, as well as their strengths and

limitations, and no one can be, in general, considered better or worse than another one. However, the finding suggesting

that quarantine is a good and efficient strategy for containing COVID-19 is an important result which is strengthened by

the convergence of such different models.
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