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The architecture, engineering and construction (AEC) sector is a significant driver of economic activity around the world.

Structure- and workplace-related safety accidents have the potential to be life-threatening. Unfortunately, these are

always some of the most overlooked things in the sector.
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1. Introduction

In the United States, around 40% of bridges are over 50 years old, and more than 9% of them are rated as structurally

deficient, which would draw a total cost for bridge rehabilitation of around $123 billion . In addition to the need to design

more robust structures under various loads , efficient structural monitoring is also important for aging infrastructure.

Accurate structural health assessments are the basis for the decision-making of infrastructure maintenance, repair and

rehabilitation. Typically, structure health monitoring (SHM) relates to different approaches, such as conducting regular

visual inspections or relying on structural monitoring sensors . Visual inspections require experienced inspectors to carry

inspection instruments to reach the structure surface and conduct the inspection, and such a process can be labor-

intensive, time-consuming and sometimes risky. Sensor-based monitoring can identify defects from both the structure

surface and interior, and it is more reliable when the sensors are functional . As time goes by, however, the accuracy

may be compromised due to changing environments or sensor aging problems. Under these circumstances, noise filtering

approaches could be used to correct the data. However, this is also tedious and requires expertise.

Similarly, workforce safety issues in jobsite safety management (JSM) are also a challenge for the AEC industry . For

example, the US Occupational Health and Safety Agency (OSHA) recorded a surprisingly high death toll of 1008

construction worker fatalities in 2018 that were mainly caused by common on-site accidents, such as being struck by

falling objects and falling from heights . Traditionally, construction on-site safety monitoring relies on site patrols and

surveillance . However, the complex nature of site dynamics would make on-site safety monitoring more difficult and

less proactive . In addition, the fatigue level of workers cannot be accurately identified.

Over the past few years, researchers have been formulating various machine learning (ML) applications for various fields

. Prime ML applications in SHM and JSM include structure damage detection   and on-site worker safety

monitoring . The rapid evolution of graphics processing units (GPUs) has dramatically improved the computational

capacity for processing ML algorithms, which has led to the advent of an increasing amount of deep learning (DL)

applications that are underpinned by improved GPU performance . In particular, the convolutional neural network

(CNN), a DL algorithm, achieved extraordinary results in the ImageNET Large Scale Visual Recognition Challenge 2012

(ILSVRC2012), which is a benchmark in object classification and detection for thousands of object classes and millions of

images . Currently, DL has outperformed many advanced algorithms in numerous fields . More and more, DL

applications are being developed and deployed to address image classification, data augmentation and object detection

problems . Besides that, scholars have also made encouraging progress in integrating DL and natural

language processing (NLP) for the text extraction of construction safety reports . Through analyzing and classifying

such reports, hidden dangers can be identified in time. Therefore, corresponding measures can be taken to avoid similar

accidents in the future. It can be seen that ML and DL have great potential in image recognition and data analysis and are

likely to be the best options to address the challenges of SHM and JSM.

2. Revew of DL and ML Safety Applications

2.1. SHM

2.1.1. Vision-Based Damage Detection

[1]

[2][3]

[4]

[5][6]

[7]

[8][9]

[10]

[11]

[12][13][14][15] [16]

[17]

[18]

[19] [18][20][21]

[22][23][24][25]

[26][27]



In recent years, researchers have used computer vision-based methods to conduct the visual inspection of surface

defects and have attested considerable merits . These methods are primarily based on image processing

techniques (IPTs), such as histogram transformation, texture recognition and edge detection . However, these

methods are vulnerable to lighting condition changes and image distortion issues.

To enhance the performance of IPT-based approaches for defect detection, researchers have integrated ML algorithms

. Technically, ML algorithms can efficiently classify different damage features extracted from IPTs. ML-based

methods mostly focus on identifying typical structural defects such as cracks , rusting ,

spalling  and loose bolts . Nevertheless, these methods require defect features to be clearly defined and

extracted using proper classifiers. Overall, these methods lack efficiency, feasibility and accuracy. Rapidly developing DL

techniques are expected to solve the problems mentioned above. The CNN, as an end-to-end model, can improve the

efficiency of defect detection and localization significantly because it can learn the defect features automatically from the

labeled defects in the training samples. Normally, the process of using a CNN to determine defects in images is as

follows: a fixed-size sliding window is used to scan and separate the image into small patches, and then a well-trained

CNN is used to detect the defects on each small patch separately. Because the scales and shapes of defects may vary, it

is difficult to find an appropriate window size to fit all kinds of them in practice.

To overcome the drawback above, a region-based CNN (R-CNN)  was proposed to replace the sliding windows

method. The R-CNN is a two-stage detector. First, it employs a selective search approach  to generate region

proposals. Then, the defect features can be extracted from the regions for classification and be highlighted by bounding

boxes.

2.1.2. Vibration-Based Damage Detection

Although a pixel-level representation of structural defects is beneficial for SHM, it can only identify the damage level on

the structure surface and is not competent to infer the performance of internal structural components which may have

been deteriorated in advance . Vibration data is the main type of source of data utilized in SHM. Technically, any

structural damage will change the stiffness and mass distributions of the structure and lead to differences in the natural

frequencies and mode shapes . Hence, vibration-based SHM methods have the potential to detect internal structural

damages by analyzing the abnormal data acquired from the sensors (e.g., accelerometers). The previous research of

vibration-based SHM mainly focused on setting up a real physical model to imitate the status of a real structure. Basically,

this model-driven method employs mathematical modeling and physical laws to represent the monitored structure .

Hence, the level and location of the damage can be determined accurately by analyzing and solving the model.

Nevertheless, it is challenging to build and solve such a complicated model when the complexity of the monitored

structure increases and the environmental factors are considered. Currently, model-driven methods have been

progressively replaced by data-driven methods . The most critical drawback of the model-driven approach is that

modeling usually requires expertise and is time-consuming. Unlike the model-driven method, the data-driven method can

identify the anomaly data directly by measuring the data collected from the sensors. Most of the data-driven method is

based on the ML paradigm . As the appropriate sensors’ layouts can improve the efficiency and accuracy of data

collection and transmission, ML algorithms, such as a genetic algorithm (GA) , have also been used for the

determination of optimal sensor layouts. However, when applying vibration-based SHM methods in practice, the natural

frequencies of the structure are easily affected by environmental factors (e.g., temperature) . For example, if a

structure has some small-scale damages, the changes in the natural frequency of the structure would possibly be

suppressed by those environmental variables. Some scholars have conducted several analyses on the evolution of

structural properties and their relationship with changes in environmental parameters . Among them, the monitoring

of the Z24 bridge is emblematic for addressing this issue . Although significant efforts have been made in this regard, it

requires comprehensive expertise and is time-consuming .

2.2. JSM

2.2.1. Workers’ Unsafe Behavior Detection

On-site surveillance videos or images have been used for automated unsafe behavior detection in recent years. Variables

such as hard hats, safety vests and workers can be detected by using certain computer vision techniques (e.g., a

background subtraction algorithm , the histograms of oriented gradients (HOG) method , and the scale-invariant

feature transform (SIFT) ). Nowadays, such methods which require much work for feature extraction are being replaced

by DL gradually.
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Mneymneh et al.  developed a CNN-based framework that could determine if workers (even they are moving) were

wearing hard hats on the construction site. Xie et al.  modified a CNN to detect workers’ hard hats, and the model

produced excellent results in the mean average precision (mAP) performance metric. Similarly, the Faster R-CNN  and

SSD methods  were also employed to detect hard hats.

Fang et al.  modified the Faster RCNN to identify if workers equipped harnesses properly. Kolar et al.  employed a

VGG-16 model to detect if safety guardrails were installed correctly to prevent workers from falling from heights. Siddula

et al.  integrated a Gaussian mixture model (GMM) with CNNs to detect roofers on roof construction sites. This

research can alleviate roof site fall risks.

In the unsafe activities identification area, Ding et al.  coupled a long short-term memory (LSTM) model  with CNNs

to identify if the worker would climb a ladder unsafely . Kim et al.    developed an image-based risk prevention

system to display the safety-related information of each construction worker on a wearable augmented reality (AR) device.

Luo et al.  utilized a Faster R-CNN to determine workers’ activities based on construction site images. Considering that

temporal information is necessary for dynamic activities detection, Luo et al.  later improved the framework for video-

based worker activity recognition by helping the temporal information emerge. Some researchers have also investigated

construction vehicle detection using DL. Kim et al.  employed a region-based FCN to detect construction vehicles.

Fang et al.  used a Faster R-CNN to identify the spatial relationship of workers and excavators on construction sites.

This study provided a basic prototype of the site safety alert system, which can prevent workers from being hit by heavy

equipment. Son et al.  used a Faster R-CNN to identify on-site workers in diverse poses against complex backgrounds.
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