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Arundo donax L., the giant reed—being a long-duration, low-cost, non-food energy crop able to grow in marginal
lands—has emerged as a potential alternative to produce biomass for both energy production, with low carbon

emissions, and industrial bioproducts.

Arundo donax L. reed genomic sequencing

| 1. Introduction

A. donax L. is a widespread species of unclear origin. This perennial grass grows spontaneously in temperate and
tropical zones almost all over the world 21, |t can be found in ecosystems highly altered by anthropic activity and
along riparian zones B, where it often acts as an invasive weed reducing biodiversity !, and brings an increased
risk of wildfires and floods . The roots can grow to 5 m in depth I8 and canes can reach 8-10 m in height and
3—4 cm in diameter (Figure 1). The leaves are flat, 5-8 cm wide and 30-100 cm long, inserted alternately in two
ranks B |n southern Europe, new canes sprout continuously from rhizomes, starting in early March until
August to November, when flowering takes place. Senescence follows in winter, with canes becoming yellow and

generally losing leaves and inflorescences. Inflorescences are large plume-like panicles 30—100 cm long [ that do
not produce viable seeds [2ILILL12][13]

N O e
Figure 1. Crop field of A. donax L. for energy purposes in the third year of cultivation.

Studies on A. donax L. sterility are often contradictory. In fact, this topic has yet to be clarified, since a drastic

founder effect could explain this, rather than it being a consequence of defective chromosome pairing in aneuploid
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A. donax and A. micrantha Lam. 141, At first glance, in A. donax, male and female gametogenesis fails right after
meiosis. Following the megaspores’ mother cell formation at the tetrad stage, three chalazal megaspores
degenerate, while one micropilar megaspore enlarges, develops a large nucleolus but no embryo sac, with the
consequent proliferation of dysfunctional cells and the failure of ovule development. Pollen grains' cell walls usually
collapse by autolysis, with the appearance of large numbers of vacuoles and variable numbers of nuclei and
micronuclei. Despite this being the common result, the formation of a few viable pollen grains is reported with a
frequency of 6.2% 14131 Meijosis occurs in less than 10% of microsporocytes, and no formation of exine occurs in
the microsporangium 2. A. donax sterility has been reported to be related to alterations in gametogenesis and
fertilization and post-fertilization development 181, A. donax sterility most likely has various causes that have led to
its agamic propagation strategy. Reproduction is exclusively asexual and occurs through vegetative propagation 7]

(28] hy fragmentation of rhizomes and cane fragments, which are dispersed by floods or by human activity 2291,

The worldwide spread of A. donax is related to several domestic and agricultural purposes such as the making of
walking-sticks, baskets, mats, fishing rods, fences, plant stakes and musical instruments’ parts, especially the
reeds for clarinets and saxophones W42 A donax is supposed to have spread from Asia, its native center, to
America, passing through the Mediterranean area [1212211231[24125]  Other authors suggest that this plant originated
in Mediterranean regions from native species (281, At least four other species from the Arundo taxon are present in
the Mediterranean area: A. plinii L., A. collina Ten., A. mediterranea, and A. micrantha Lam. [27)28]  sijx lineages of
A. donax are supposed to be distributed from Asia to the Mediterranean basin, with a putative area of origin in the
Western and Southern edges of the Qinghai-Tibet Plateau 22, The phylogenesis of A. donax is still debated, as the
hypothesis that this species is polyploid or allopolyploid is shared by various authors based on its macroscopic
traits, such as the great vegetative vigor and the absence of fertile seeds [12I13130] The literature data about the
chromosome number of A. donax L. show some discrepancies, from an often-reported number of 108-110
chromosomes [L2BABLE2IS3] to 84 chromosomes (2l or seed-producing cytotypes with 72 chromosomes,

although this last result was published before the revised classification of the genus Arundo 28],

Large-scale cultivation of A. donax was established between the 1930s and the 1960s in Northern Italy to produce
the textile fiber Rayon, but after the Second World War, it became unsustainable due to the competition from
petroleum-derived products B4, Recently, the economic interest in this species has risen again and a
considerable number of publications have dealt with different topics about this interesting crop: bioenergy,
agronomy, invasiveness, and its use for phytoremediation 22, The high yield in dry matter per hectare and the low
inputs required for cultivation make A. donax a promising energy crop [EIB8I37  Chips and pellets for direct
combustion are a practical solid fuel obtainable from A. donax 28 while other possibilities are gasification B2,
second-generation bioethanol “9[41l and biogas for co-generation. For the last-named use, various experiments in
northern Italy have promoted A. donax as an acceptable substitute of Zea mays L. in anaerobic digestion plants.
Other potential benefits include biofuels 42[43! hiocompounds for plastic polymers 44, green building technologies

(45] and leaf protein concentrate as a feed ingredient 48],

The capacity of A. donax to grow on marginal and abandoned lands makes this plant viable for cultivation on soil

not suitable for traditional agriculture. Lands can be defined as marginal for different reasons, such as water
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scarcity, poor soil quality (e.g., high conductibility, low organic matter, etc.), and industrial pollution. On sandy loam
soil (77% sand) with low organic matter content (1.2% organic matter) and low nutrients availability, the A. donax
dry biomass yield was reported to be about 20 tha™! 47, This result was obtained with no irrigation, weeding or
pest control. Taken together, these characteristics take this energy crop out of competition with food/feed cultures.
Furthermore, A. donax has been classified as moderately salt tolerant with a 50% vyield reduction at 11 dS m™
salinity concentration [48] Also, in this case, there is no competition with food-feed crops because, for these crops,
the salinity concentrations determining 50% yield reduction are significantly lower, as in the case of corn (5.9 dS
m™1) and rice (3.6 dS m™) or similar as in the case of sugar cane (8—12 dS m™2). For sugar beets, it is reported a
higher salt tolerance (15 dS m™) but this culture requires a strong weeding control, irrigation and fertilization

procedures.

Marginal lands are growing worldwide due to anthropic activities, in fact secondary salinization affects 20% of
irrigated land worldwide “2!, and in Europe, the soil contaminated with heavy metals represent 6.24% (137,000
km?) of the total agricultural land Y. This could mean an opportunity to cultivate energy crops environmental

friendly such as A. donax in the near future.

| 2. Genetic Engineering

So far, to our knowledge, no transgenic A. donax plants with improved characteristics have been developed,
possibly due to the limited regeneration of tissues and the absence of traits of interest well characterized at the
molecular level. In any case, transient expression of GUS and GFP reporter genes is obtainable by an optimized
particle bombardment protocol on Arundo donax callus cells. Important parameters to be taken into account include
helium pressure, distance from stopping screen to target tissue, value of vacuum pressure, material and size of the
microparticles, DNA concentration and number of bombardments. Higher efficiency in DNA transfer, resulting in
100-150 modification positive spots for explant, is achievable with cells bombarded twice at 1100 psi, with 9 cm
target distance, 24 mm Hg vacuum pressure, 1 mm gold particle size, 1.5 ug DNA per bombardment, three days of
pre-culture before the bombardment and six days of culture after bombardment. Bombardment with a GFP reporter
gene resulted in higher expression than using GUS gene. The 35s promoter of CaMV can be used for the
constructs, with hygromycin resistance to select modified cells B, Transformation of A. donax is also possible
through protoplast manipulation. Starting from suspension culture, cell walls can be digested with a solution
containing food-grade enzymes and 2—3 h incubation at 37 °C. The comparison among promoters highlighted that
Ubi2 promoter from P. virgatum L. is a stronger promoter than CaMV 35S, with the second inducing low expression
in A. donax. Trials with a different set-up of PEG-mediated transformation failed, while electroporation carried out at
130 V and 1000 pF resulted in a transformation efficiency of 3.3% + 1.5% (321,

The study of the A. donax genome is still a demanding research topic aimed at collecting knowledge needed for A.
donax genetic improvement, since the lack of a high-quality reference genome sequence. A hybrid approach
combining lllumina and long-read sequencing technologies, i.e., Pac Bio or Nanopore, could be used as previously
reported for de novo sequencing in other crops B3I |n particular, the high-quality reference genome of Oryza

longistaminata has been obtained incorporating lllumina and PacBio sequencing data 23!, while the de novo
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genome sequence assembly of trifoliate yam (Dioscorea dumetorum) was the result of lllumina and Oxford

Nanopore technologies (241,

A parallel approach to identify putative target genes for A. donax genetic improvemt is the utilization of S. italica
genome, the more related species that is actually sequenced. In fact, considering the lignin biosynthetic pathway
genes, in particular PAL-like and CCoAMT-like genes, the high homology of four Mediterrean ecotypes of A. donax
transcripts with S. italica L. (23 represent an important perspective for mining possible target sequences about this
trait improvement by bioinformatics. A similar approach has been recently applied to isolate potential gene target to
be used for genetic improvement of Miscantus x giganteus, a promising lignocellulosic biomass crop for biofuel
production. Transcriptional analyses and phylogenetic and genome synteny analyses have allowed the
identification of the major monolignol biosynthetic genes and the putative transcription factors regulating their

expression 28l (Zeng et al. 2020).

Different reviews have been published on genetic improvement of energy crops, but for the energy crops suitable
for genetic transformation, such as swichgrass, important results in the improvement of energy production have
been obtained by gene silencing 758 and CRISPR/CAS 9 (Clustered Regularly Interspaced Short Palindromic
Repeats/CRISPR associated protein 9) B2 techniques. However, the data reported for A. donax are based on the

results of agronomic studies with the aim of optimization of biomass quality.

Currently, sequence databases and information on organs diversity and possible targets for improvement can be
found in RNA-seq lllumina transcriptomics studies. Gene Ontology Analysis of metabolic differences among bud,
culm, leaf and root tissues highlighted that the most variety can be found in the leaves, most notably for light,
osmotic, salt and metal stress response, and for primary and secondary metabolites production 89, About 40-45%
of transcripts showed homologies with known sequences and functional annotations of Oryza sativa L., Triticum
aestivum L. and mostly with S. bicolor L. and Z. mays L., most importantly for gene categories related to flowering
time, plant height and structure, carbohydrates composition and vernalization response. CCoAMT-like genes
deserve particular attention for their possible role in obtaining mutants with decreased content of lignin in culms 69,
The response of A. donax to low oxygen stress analyzed by a metabolomic approach [ provided numerous

insights required to target functional genes by transcriptomics.

About the well-known A. donax tolerance to low soil quality, RNA-seq provided insights of the available defenses
from adverse soil conditions. Considering the excess of Ni and Cu, doses of 25-100 mg/L activated the expression
of a metal-uptake YSL-like gene and a macrophage protein which was NRAMP-like 2. Adjustments in
phytochelatin synthases expression could represent a reliable strategy to increase A. donax uptake of metalloid
contaminants with the purpose of phytoremediation. With an RNA-seq methodology, three putative genes,
AdPCS1-3 have been identified in A. donax. The expression of these three genes in response to CdSO, stress
was tissue specific, with AdPCS1 the most up-regulated compared with control. However, the production of
Arabidopsis thaliana L. transgenic lines overexpressing these genes resulted in deleterious effects on growth, with
necrotic effect, while the same strategy applied to yeast resulted in Cd-tolerant lines 62, The responses to salt

stress and salt tolerance are other important traits investigated by RNA-seq with improvement purposes. Different
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ecotypes exhibited a possible positive correlation of salt exposure with the expression of stress-induced
transcription factors DREB2A-like and WRKY53-like, activation of detoxification processes and abscisic acid
increase. Moreover, a fast response to salt stress, with overexpression of ion transporters and K+/Na+
homeostasis-related genes, such as SOS1-like, NHX1-like or KHT1-like, represents an effort to reduce the ionic
stress, but was detrimental to the growth performance [E4I83 A RNASeq analysis 8 conducted under long-term
salt stress allowed the identification of differentially expressed genes with a dose-dependent response. The
analysis was performed on a total 38,559 DEGs (differentially expressed genes) and among them, 2086 were up-
regulated and 1766 were down-regulated.

In particular, it is reported the analysis of clusters related to salt sensory and signaling, hormone regulation,
transcription factors, Reactive Oxygen Species (ROS) scavenging, osmolyte biosynthesis and biomass production.
Several unigenes identified have the potential to be used to improve productivity and stress tolerance in A. donax.
In particular, the silencing of the GTL1 gene (a homolog of Setaria italica trihelix transcription factor) acting as a

negative regulator of water use efficiency could be a good target for NBT (new breeding techniques).
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