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A solution is to develop a suitable estimation strategy which led scholars to propose different temperature estimation

schemes aiming to establish a balance among accuracy, adaptability, modelling complexity and computational cost. This

article presented an exhaustive review of these estimation strategies covering recent developments, current issues, major

challenges, and future research recommendations. The prime intention is to provide a detailed guideline to researchers

and industries towards developing a highly accurate, intelligent, adaptive, easy-to-implement and computationally efficient

online temperature estimation strategy applicable to health-conscious fast charging and smart onboard BMS. Full
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1. Introduction

Lithium-ion batteries (LIBs) are widely used in electric vehicles (EVs), grid-tied stationary energy storage systems, and

several other consumer electronics primarily due to their high voltage rating (>4 V/cell) and high energy density (~265 (W

h) L −1 ) and longer operational life. The use of LIBs in automotive and aerospace applications has led to larger cell sizes

and large battery packs for a higher driving range and the requirement for more aggressive charging and discharging.

However, thermal instability and temperature-dependent nonlinear behavior is some of the common concerns behind the

safe and reliable operation of LIB systems. It is noticed that the operation of batteries outside the safe operating

temperature directly affects the performance of LIBs, such as cycle life, efficiency, reliability and safety. Researchers

investigating the thermal performance of LIB showed that the best operating temperature range is from 25 °C to 40 °C 

. Richardson et al.  demonstrated that the difference between the core and surface temperature could reach more

than 10 °C during real-life applications, especially during the high discharging condition and fluctuating load current

demand. The excessive temperature difference and the accumulation of a large amount of heat inside the cell could lead

to thermal runaway or even explosions and fire . That necessitates the employment of a battery management system

(BMS) for effective monitoring of battery parameters (current, voltage, temperature), estimation of battery states (state of

charge (SOC), state of health (SOH), remaining useful life (RUL), state of temperature (SOT) ). Research studies

demonstrated that SOC , SOH , and remaining storage capacity  are a function of temperature; thus, the estimation

of the battery states also depends on the accurate estimation of cell temperature. The Columbic efficiency of a cell is

greatly affected by the cell temperature during the charging and discharging period. Few other popular functionalities of

BMS include cell balancing  and fault detection/diagnosis  to ensure optimum capacity utilization, operational safety,

reliability, and longer battery life often requires temperature information of an individual cell and battery pack as well.

Therefore, accurate information of core and surface temperature is highly crucial for effective thermal management and

safety of a LIB pack. Moreover, in cold climate areas, the battery capacity is drastically reduced due to low-temperature

operation that requires preheating the battery to a suitable range for optimum performance . It is also evidenced that

for every 0.1 °C beyond the safe operating region the battery capacity degrades by about 5% . It is evidenced that

maximum heat is generated during the discharging period especially with fast discharging . Therefore, accurate

temperature estimation is essential for effective thermal management and safety during fast charging and discharging and

preheating of the cell to minimize capacity fade.

In summary, it could be stated that the accurate information of cell temperature is undoubtedly serving as the essential

basis for the thermal management and safety of LIB. While the surface temperature of each cell can be measured by

installing a temperature sensor on each cell, the core or internal temperature measurement directly using physical

sensors is challenging. Moreover, installing a temperature sensor on each cell surface is not practically feasible from a

system cost, space and weight point of view as any high-capacity battery pack used in EVs and grid-tied systems

essentially consists of thousands of individual cells. Researchers have also incorporated multi-dimensional sensing and

self-healing functions into a single battery cell to develop a smart battery . Smart cells are typically capable of
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parameter measurements and estimation of cell states including the state of temperature. Despite the modularized

application of BMS in smart batteries, accurate temperature estimation is still required, as otherwise installing sensors in

each cell results in high implementation cost and complexity. Therefore, researchers are struggling hard to develop a high-

fidelity, accurate, easy-to-implement, and computationally inexpensive online temperature estimation strategy suitable for

low-cost onboard BMS. Several temperature estimation techniques have been proposed by researchers so far. Each

different type of method has its advantages and limitations with respect to the above-mentioned features of an optimum

BMS. Therefore, a summary of all the prominent techniques would be very helpful to researchers and developers serving

as a baseline for further research and as a guideline for selecting appropriate techniques suitable for a specific

requirement. However, such a summary with detailed discussion on current progress and explanation of the existing

issues, challenges and future research scopes has not yet been presented in the literature. Therefore, this article covered

the research gap by conducting a comprehensive review of the state-of-the-art temperature estimation strategies reported

in the literature so far.

2. Generic Temperature Estimation Strategy

Irrespective of battery chemistry, heat is accumulated inside the battery during the charging/discharging even during idle

conditions, majorly due to several largely exothermic chemical and electrochemical reactions as well as transport

processes. If the heat transfer from the battery to the surroundings is not sufficient, then the heat gets accumulated inside

the battery resulting in an increase in core and surface temperature, thereby risking thermal runaway. This phenomenon is

even more prominent in the case of hard-cased insulated batteries (as used in EVs), under fast charging/discharging and

the operation in hot environments. Heat dissipation is worse in cylindrical LIBs that are extensively used in high-capacity

LIB packs. Therefore, a typical temperature estimation scheme consists of two models, namely, a heat generation model

and a heat transfer model . Often, a battery electrical model is also used to estimate the total heat generation using

Bernardi’s  heat generation model whereas few other models use a mathematical form of battery electrochemistry to

calculate the heat generation. Adaptive estimation strategies also consider the influence of different battery states, such

as SOC and SOH, as the battery temperature is a function of these battery states. Then, the heat transfer model takes the

estimated total heat quantity as well as few other external measurements such as ambient temperature to predict the

temperature of that cell. Closed-loop estimation schemes use the measured or the estimation temperature as feedback to

improve the prediction accuracy. A schematic layout of a generic temperature estimation strategy for LIB is shown in

Figure 1 .

3. Classification of Temperature Estimation Strategies

As shown in Figure 1 , typically, a temperature estimation scheme consists of a heat generation model and a heat

transfer model. The heat generation models reported in the literature can be broadly classified from two different aspects;

based on modelling strategy and based on the source of heat generation. Heat generation models based on modelling

strategy can be classified into three groups, physics-based electrochemical models , equivalent circuit models

(ECM) , black-box models . In contrast, based on the source of heat generation, these models can be

grouped as a concentrated model, distributed model  and heterogeneous model . The concentrated heat

generation model considers that all heat is generated at the core only, usually considered to reduce the modelling

complexity. The distributed heat generation model considers that uniform heat is generated throughout the entire cell

geometry whereas the heterogeneous model can capture different heat generation from difference cell layers usually

resulting in temperature and current density gradients inside the cell. The heterogeneous models are more detailed thus

can produce highly accurate predictions; however, these are most complex and require extensive experiments for

modelling. Distributed heat generation models are a balance between the concentrated and heterogeneous models. The

heat transfer models can be classified into finite element analysis (FEA)-based models , heat capacitor-

resistor models (lumped or distributed parameter) , and data-driven techniques. Heat capacitor–resistor-

based models use the analogy between electrical and thermal systems. A heat capacitor–resistor can be further classified

as mentioned in Figure 1 . Lumped parameter models are simple and useful for online applications, however, only one or

two average temperatures can be predicted with these models whilst the battery temperature distribution is not spatially

uniform, especially in larger capacity cylindrical LIB cells. On the other hand, complex distributed models  can

describe the detailed temperature distribution in a cell, however, they are not suitable for online application due to their

computational complexity. Several other detailed models of LIB accounting for the thermal characteristics of different

layers are studied in . A two-state/node model provides information on core and surface temperature

whereas a one-state/node model can provide only core temperature.
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Figure 1. Family of (A) Heat generation model, (B) Heat transfer model, (C) Temperature estimation strategy.

The heat transfer model where the total heat generation is one of the input parameters is collectively called the battery

thermal model where the total heat generation is estimated by the battery heat generation model. The thermal modelling

of LIB is a separate area of study and is not under the scope of this study. It deals only with the temperature estimation

strategies. However, as most of the temperature estimation strategies are extensively depending on thermal modelling, an

overview of each modelling technique is also discussed with the respective temperature estimation strategy for better

understanding. Researchers employed different types of heat generation models with different kinds of heat transfer

models to come up with a temperature estimation scheme. Therefore, it is challenging to classify these estimation

strategies. Broadly, the temperature estimation schemes can be grouped into electrochemical thermal modelling-based,

equivalent electric circuit model (EECM)-based, machine learning (ML)-based, numerical-model based, direct impedance

measurement-based, magnetic nanoparticles-based schemes. The families of the LIB heat generation model, heat

transfer model and temperature estimation strategy are illustrated in Figure 2 .

4. Comprehensive Review of Temperature Estimation Strategies

Further, depending on the modelling complexity, EECM could be also classified as lumped-parameter and distributed

parameter models. Lumped-parameter models are used for simplification and thus low computational cost compared to

detailed distributed models. Computationally efficient lumped thermal models are developed using single temperature as

input to capture the model parameters  while some researchers used both surface and core temperatures of the cell to

construct the lumped thermal models. Some also considered the correlation between cell geometry and other physical

properties with thermal modelling . However, several assumptions were made during modelling leading to inaccurate

temperature estimation compared to detailed thermal modelling. Further, thermal models that only estimate the core

temperature are considered as single-state/node , whereas if the model can estimate both surface and core

temperature then it is termed as two-state/node  thermal model. The parameters of the EECM are identified through

ranges of experimental studies such as electrochemical impedance spectroscopy (EIS) or utilizing externally measurable

quantities, such as voltage, current, and temperature. Few studies also considered various conditions of SOC, SOH and

estimated surface/core temperatures to make the model more robust. It is very difficult to group those thermal models

because lumped models are used in both single-state and dual-state modelling and the model could be first-order and

second-order. Therefore, the literature is grouped into cell-level and pack-level temperature estimation schemes that are

discussed below.

Cell internal temperature estimation using a lumped-parameter thermal model and an approximate distributed thermal

model have several drawbacks. Firstly, accurate determination of thermal model parameters such as heat generation and

cell thermal properties is highly challenging. Heat generation inside the cell is typically approximated by measuring the cell

operating current, voltage and the internal resistance that are again functions of SOC, cell internal temperature and SOH.

Moreover, a cell is constructed using many different materials combined into a layered structure and thermal contact

resistances between these layers are often unknown. Temperature estimation methods use surface temperature
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measurements and even the combination of surface-mounted temperature sensor and thermal model typically failed to

detect the thermal runaway as rapid fluctuations in the internal temperature is difficult to capture using surface-mounted

sensors because the heat conduction between the core and battery surface takes a considerable amount of time .

Furthermore, embedding micro-temperature sensors within the cell  is not practically possible for a large capacity

LIB pack from a manufacturing complexity and system cost point of view. Hence, the core temperature measurement

using a physical sensor is not an appropriate method for industrial applications.

Online EIS-based temperature estimation strategy termed impedance-temperature detection (ITD) was proposed by

Richardson and Howey  for sensorless temperature estimation which is adaptive to cell ageing and practical

uncertainties. However, ITD cannot provide a general solution alone, thus, such a strategy combines surface-mounted

sensors with ITD for accurate online temperature estimation . Still, temperature sensors are required to be installed.

Further to this study, they integrated ITD with an electric-thermal model along with a DEKF for online core temperature

estimation of a LIB cell even with unknown convection coefficient. They also demonstrated that the performance of the

thermal model plus ITD is almost similar to the ITD with surface thermal sensors. Despite the advantages, the major

limitations of the strategy are online impedance determination and the requirement of an accurate electric thermal model,

thus encompassing the same drawback of conventional thermal modelling-based strategies. Moreover, although the

strategy can estimate both core and surface temperature of an individual cell, the pack-level estimation strategy was not

illustrated in this study.

The influence of cell temperature, SOC and SOH on the impedance spectrum, excitation frequency and thereby

estimation accuracy of cell internal temperature was investigated by Zhu et al. . Here, the temperature estimation was

made based on an impedance response matrix analysis which was developed using EIS measurements. Despite high

accuracy, the effect of the nonuniformity of the cell temperature and the correction method was not considered. Moreover,

an extensive experimental study is required for modelling and the computational cost is also very high. Thus, the online

application of the strategy is challenging. Identification of suitable frequency and other EIS parameters is very difficult

whilst the estimation accuracy significantly depends on these parameters. Moreover, accurate determination of the real

and imaginary parts of the impedance is highly challenging, whilst different decisions for these two parts lead to

inaccurate temperature estimation. A combination of Linear Parameter Varying (LPV) thermal model and a polytopic

observer-based battery-cell temperature estimation algorithm was proposed by Debert et al. . The EIS-based strategy

was also employed in references  to estimate the core temperature. Despite high accuracy, the major

limitation is the determination of accurate impedance-temperature characteristics and it should be acquired in advance

through tedious preliminary tests. In addition, the impedance-temperature characteristic of a cell is influenced by cell

ageing leading to inaccurate prediction due to SOH deterioration. A summary of direct impedance measurement-based

temperature estimation strategies is presented in Table 1 .

Table 1. Summary of direct impedance measurement-based strategies.

Reference Types of Models Important Note

Srinivasan et al. Direct measurement of electrochemical
impedance Experimental validation with EIS data

Schmidt et al. Direct measurement of electrochemical
impedance

Temperature non-uniformity was not considered,
experimentally validated

Richardson et al. Thermal-impedance model + EIS measurement
at single frequency + surface temperature

feedback

Independent of cell thermal properties, heat
generation or thermal boundary conditions,

experimental validation with EIS data

Richardson and
Howey 

Online EIS measurement (impedance-
temperature detection (ITD) + dual-extended

Kalman filter (DEKF)

Unknown convection coefficient is considered,
experimentally validated

Zhu et al. Impedance response matrix analysis,
developed using EIS measurements

Influence of cell temperature, SOC and SOH on the
impedance spectrum, experimental validation with

EIS data
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