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Modulation of macrophage plasticity is emerging as a successful strategy in tissue engineering (TE) to control the
immune response elicited by the implanted material. Indeed, one major determinant of success in regenerating
tissues and organs is to achieve the correct balance between immune pro-inflammatory and pro-resolution players.
In recent years, nanoparticle-mediated macrophage polarization towards the pro- or anti-inflammatory subtypes is
gaining increasing interest in the biomedical field. In TE, despite significant progress in the use of nanomaterials,
the full potential of nanopatrticles as effective immunomodulators has not yet been completely realized. This work
discusses the contribution that bioactive inorganic nanoparticles may give to TE applications, helping native or

synthetic scaffolds to direct macrophage polarization for skeletal muscle regeneration.

nanotechnology tissue engineering immunomodulation macrophage plasticity

skeletal muscle regeneration

| 1. Introduction

Tissue engineering (TE) is a multidisciplinary field including bio-medicine, material science, and engineering, aimed
at manufacturing functional biological tissues to be implanted in organs damaged by otherwise incurable diseases
or severe casualties W2, Engineered tissues are also fundamental to set up in vitro models of human physiological

systems, replacing animal models for drug development, toxicology studies, etc. [,

A successful TE treatment depends on the immune response of the recipient tissue. In fact, the engineered tissue
must initially challenge the inflammatory microenvironment of the damaged tissue to establish an efficient
integration and, after the implantation, the inflammatory reaction characterizes a possible rejection process. The
traditional strategy adopted after tissue and organ transplantation aims at minimizing the host immune response
through anti-inflammatory and immunosuppressive therapies. However, if, on one hand, the immune system is
often the cause of implants rejection, on the other, several immune components positively affect tissue
regeneration and healing . Therefore, controlling the balance between immune pro-inflammatory and pro-

resolution players represents a better strategy to ensure implant tolerance than suppressing the immune response
(5]

Among the immune cells involved in the foreign body response, macrophages play a central role. Macrophages are

effector immune cells simplistically divided into two classes, named M1 and M2. To ensure regeneration, a balance
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between M1 and M2 activities (pro- and anti-inflammatory, respectively) shifting over time is required &: hence,
scaffold-based approaches to direct macrophage polarization are gaining much interest in TE for regenerative

medicine.

Nanomaterials are emerging as effective agents able to target macrophages, perturbing their polarization and thus
their activity . As a consequence, in recent years, optimally designed-nanoparticles (NPs) for the modulation of
macrophage plasticity have been studied for treating diseases characterized by hyper-tolerant or inflammatory
immune microenvironment, such as cancer 8 and inflammatory diseases [, respectively. As far as TE is
concerned, the full potential of nanoparticles as macrophage regulators has not yet been fully realized. This review
aims at discussing nanotechnology impact on TE in terms of directing macrophage polarization and

reprogramming, focusing on bioactive inorganic nanoparticles prospects for skeletal muscle regeneration.

| 2. Nanoparticles to Direct Macrophage Polarization

Nanoparticles (NPs) have been initially developed to overcome problems of bioavailability, body retention,
solubility, stability, and selectivity of pharmaceutical agents, protecting the carried drug until reaching the desired
body district. However, nanomaterials at the nanoscale (1-100 nm) acquired peculiar properties, due to the

increased reactive surface/bulk ratio with respect to micro- and macro-structures 29, making them attractive for TE.

Indeed, in the 2000s, a key role has been recognized for nanomaterials in TE, as hanocomposite polymers, both in
the form of electrospun fibers and hydrogels, often provide superior mechanical, functional, and electrical
properties (111 In the context of skeletal muscle regeneration, for example, aligned nanofibrous scaffolds (e.g.,

PCL/collagen) favored cell alignment and myotube formation, thus promoting muscle regeneration 12,

It is noteworthy that the role of NPs as modulators of macrophage plasticity is strongly emerging; indeed, due to
their particulate (instead of molecular) nature, nanopatrticles preferentially target professional phagocytes, such as
macrophages 3], This property is of a paramount importance for the success of TE procedures. Therefore, several
research works focused on the use of organic nanovesicles (liposomes, polysaccharides, capsules, etc.) carrying
encapsulated bioactive molecules 24!, such as flavonoids 12, miRs, and cytokines 8 in order to regulate
macrophage activity. In this study, instead, we investigate three major inorganic NPs (gold, titanium oxide, and
cerium oxide NPs, later denoted as AuNPs, TiO, NPs, and CeO, NPs), not only being exploitable as carriers for
drugs and molecules, but also being characterized by intrinsic bioactivity, which renders them promising candidates

for TE therapies (Figure 1, Table 1).
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Figure 1. Inorganic NP-mediated macrophage polarization towards regeneration. The schematic representation of

inorganic NPs double role is reported. NPs may act as pristine NPs, characterized by intrinsic bioactivity, and as

carriers for peptides, cytokines, and drugs. Principal transcription factors involved in macrophage activation and

polarization are also included. NP = nanoparticle; IL = interleukin; STAT = signal transducer and activator of

transcription; NF-kB = nuclear factor kappa-light-chain-enhancer of activated B cells.

Table 1. Nanoparticle-induced macrophage polarization towards M2 phenotype.

Size

LUt (nm) Modification PhenotypePhenotype b
Au
PEGylation +
rods ND RGD M@ M2 Mouse
M2 M2
Mouse
BMDMs
spheres 13  hexapeptides M1 M2
ALl
M2 Mouse
model
spheres . Human
3o EGYlation+ MO M2 THP-1
IL-4 .
cell line

Surface
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Markers

Arg-1,
IL-4,
TNF-q,
Retnla

IL-12,
IL-6,
IL-10,
iNOS,
Arg-1,
YM1

CD80,
CD206

CD206,
CD163,
IL-4

Clinical Aim Ref.

Acute

[17]
hepatitis
Acute lung [18]
injury
Muscle [19]
recovery
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264.7

cell line

Human
THP-1
cell line

Mouse
RAW
264.7

cell line

Mouse
RAW
264.7

cell line
+
BMSCs

Rat

Used
Markers

CD206,
CD80

CD206,
CD163,
IL-4

CCRY7,
IL-6,
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Osteogenesis
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Ref.

2. Armstrong, L.; Lako, M.; Buckley, N.; Lappin, T.; Murphy, M.; Nolta, J.; Pittenger, M.; Stojkovic, M.

Editorial: Our top 10 developments in stem cell biology over the last 30 years. Stem Cells 2011

NP%S r12an90part|cles; RGD = arginine-glycine-aspartic acid; M = macrophage; Arg-1"= arginase-1; IL = interleukin;

TNF-d = tumor necrosis factor-a; MSCs = mesenchymal stem cells; BMDM = bone marrow derived macrophages;

CCR7 = C-C chemokine receptor 7; VEGF = vascular endothelial growth factor; BMP2 = bone morphogenetic
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