

# Crosslinked nanogel for cancer theranostics

Subjects: **Polymer Science**

Contributor: Wen Zhou , Guangzhao Yang , Xiaoyue Ni , Shanchao Diao , Chen Xie , Quli Fan

Crosslinked nanogels the structures of which are covalently crosslinked have better physiological stability than micelles and liposomes, making them more suitable for cancer theranostics. The applications of nanogels in drug and gene delivery as well as development of novel cancer therapeutic methods are first introduced, followed by the introduction of applications in optical and multimodal imaging, and imaging-guided cancer therapy.

crosslinked nanogel

optical imaging

cancer therapy

## 1. Introduction

Cancer is one of the major threats to human lives all over the world [1]. Traditional cancer treatment process divides diagnosis and therapy into different procedures, which is time consuming and requires high cost [2][3]. In contrast, cancer theranostics which combines diagnosis and therapy into one system can overcome such disadvantages, and has shown great potential in the field of cancer treatment [4][5][6]. Recently, phototheranostics, which based on optical imaging, have been widely studied because of their unique advantages such as high safety and sensitivity, low cost and capability of multi-channel imaging [7][8][9][10][11]. Numerous phototheranostic systems based on variety of materials such as small molecular dyes [12][13], anti-cancer drugs [14][15] and biomacromolecules [16] have been developed. However, as theranostics require the combination of multiple functionalities including imaging and therapy, complicated synthetic procedures are usually inevitable [17][18]. Therefore, developing phototheranostic systems based on multifunctional and facile synthesized materials is in high demand.

Among numerous materials for phototheranostics, nanomaterials have shown great promise and been widely applied in the field of cancer imaging and therapy [19][20]. Compared with small molecular dyes or drugs, nanomaterials can be easily prepared via nano-based preparation methods such as nanoprecipitation and nanoemulsion [21][22][23]. Some inorganic nanoparticles or 2D nanomaterials have unique optical properties, which can be used as phototheranostics directly [24][25][26][27]. In addition, different functionalities can be integrated into nanomaterials by simply doping or linking different moieties [28][29]. Anti-cancer drugs can also be absorbed or covalently linked onto such nanomaterials, endowing them with the capability for chemotherapy [30][31]. For organic nanomaterials, hydrophobic anti-cancer drugs or photosensitizers as well as optical imaging contrast agents can be encapsulated into micelles or liposomes simultaneously, which is a conventional way to construct phototheranostic platforms [32][33][34][35]. Owing to their relatively good biocompatibility, organic nanoparticles have gained increasing attention in the field of phototheranostics.

Although organic nanoparticles have been widely applied in cancer imaging and therapy, some drawbacks of conventional nanoparticles should be overcome. As most organic nanoparticles are micelles and liposomes, they may dissociate when their concentration decrease lower than the critical micelle concentration [36]. Such a feature makes nanoparticles unstable in harsh conditions such as blood circulation, which further leads to the burst release of encapsulated drugs or contrast agents [37][38]. To overcome such drawbacks, crosslinked nanogels have been chosen in the development of phototheranostic systems. Compared with micelles or liposomes, a crosslinked structure can stabilize the nanogels, leading to the non-dissociable nanostructure [39][40][41][42]. Such structure makes nanogels keep intact in the circulation, thus resulting in improved biodistribution and better tumor accumulation [43][44].

## 2. Crosslinked Nanogels for Cancer Therapy

Nanomaterials have been widely used as carriers for drug and gene delivery in the field of cancer therapy [45]. As crosslinked nanogels have the advantages including good stability and environmental responsiveness, nanogels can be good candidates for nanocarriers [46]. The crosslinked structure may prevent the burst release of loaded drugs. In addition, an activatable drug- or gene-delivery system can be developed by nanogels with environmental responsiveness [47]. In this section, we summarize applications of nanogels for cancer therapy including chemotherapy, gene therapy and enzyme dynamic therapy. The properties of these nanogels introduced in this section are summarized in [Table 1](#). The most commonly used anti-cancer drug was doxorubicin (DOX), and it can be loaded via electrostatic interaction with nanogels. Drugs can be released under specific responsiveness such as pH, glutathione (GSH) and esterase. However, such method sometimes led to low drug loading capacity. To improve the drug-loading capacity, drug-crosslinked nanogels were designed, and the drug loading capacity can reach as high as 60.8%. For gene therapy, therapeutic RNAs were commonly loaded by ionic interaction, and can be released in a tumor-associated microenvironment.

**Table 1.** Summary of the nanogels for cancer therapy by loaded drug, loading capacity, responsiveness and animal study.

| Type         | Loaded Drug | Loading Capacity | Responsiveness    | Animal Study | References |
|--------------|-------------|------------------|-------------------|--------------|------------|
| Chemotherapy | DOX/GL      | 1.2% (DOX)       | pH                | Yes          | [48]       |
|              | DOX         | 5.7%             | -                 | No           | [49]       |
|              | DOX         | 54.1%            | pH/GSH/trypsin    | Yes          | [50]       |
|              | DOX         | 18.2%            | pH/GSH            | Yes          | [51]       |
|              | TAX         | 20–30%           | pH/esterase       | Yes          | [52]       |
|              | Pt(IV)      | 60.8%            | GSH/ascorbic acid | Yes          | [53]       |

| Type                   | Loaded Drug | Loading Capacity             | Responsiveness                                              | Animal Study | References |
|------------------------|-------------|------------------------------|-------------------------------------------------------------|--------------|------------|
|                        | Pt(IV)/TPZ  | 8.06%<br>(Pt)/9.12%<br>(TPZ) | GSH                                                         | Yes          | [54]       |
| Gene therapy           | siRNA       | -                            | RNase H                                                     | Yes          | [55]       |
|                        | siRNA       | -                            | pH/RNase H                                                  | Yes          | [56]       |
|                        | siBcl2      | -                            | DTT                                                         | Yes          | [57]       |
|                        | RNase       | 23.5%                        | NTR                                                         | Yes          | [58]       |
| Enzyme dynamic therapy | -           | -                            | ·O <sub>2</sub> <sup>-</sup> /H <sub>2</sub> O <sub>2</sub> | Yes          | [59]       |
|                        | -           | -                            | H <sub>2</sub> O <sub>2</sub>                               | Yes          | [57]       |

DOX: doxorubicin; GL: glycyrrhizin; DTT: dithiothreitol; NTR: nitroreductase.

### 3. Crosslinked Nanogels for Cancer Diagnosis and Imaging-Guided Cancer Therapy

Precise and personalized treatment can provide better therapeutic efficiency than traditional therapy, and are the trends in the field of cancer treatment [60]. To achieve such a goal, powerful diagnostic methods are in high demand as real-time monitoring of the therapeutic process is a fundamental requirement. Thus, development of imaging-guided cancer therapeutic systems has gained increasing attention in recent years [61]. By virtue of the advantages of crosslinked nanogels, they have been utilized for constructing variety of nanotheranostic systems. In this section, we summarized the applications of nanogels for cancer imaging and imaging-guided therapy. The general properties of nanogels discussed in this section were summarized in [Table 2](#).

**Table 2.** Summary of the nanogels for cancer imaging and imaging-guided therapy by imaging modality, therapeutic method, responsiveness and animal study.

| Type    | Imaging Modality       | Therapeutic Method | Responsiveness | Animal Study | References |
|---------|------------------------|--------------------|----------------|--------------|------------|
| Imaging | CT                     | -                  | -              | Yes          | [62]       |
|         | T <sub>1</sub> -MRI    | -                  | -              | Yes          | [63]       |
|         | T <sub>1</sub> -MRI/CT | -                  | -              | Yes          | [64]       |
|         | FL                     | -                  | -              | No           | [65]       |
|         | FL                     | -                  | pH/caspases    | Yes          | [66]       |

| Type                   | Imaging Modality                 | Therapeutic Method | Responsiveness | Animal Study | References |
|------------------------|----------------------------------|--------------------|----------------|--------------|------------|
| Imaging-guided therapy | FL                               | PDT/PTT            | -              | Yes          | [67]       |
|                        | FL                               | PDT                | -              | Yes          | [68]       |
|                        | FL                               | Chemotherapy       | Temperature    | Yes          | [69]       |
|                        | T <sub>1</sub> -MRI/PA           | PTT                | -              | Yes          | [70]       |
|                        | T <sub>1</sub> -MRI              | Chemotherapy       | pH             | Yes          | [71]       |
|                        | PA/FL/PT                         | PDT/chemotherapy   | Laser          | Yes          | [72]       |
|                        | Fluorescence/T <sub>2</sub> -MRI | PDT/chemotherapy   | pH/GSH         | Yes          | [73]       |

CT: X-ray computed tomography; MRI: magnetic resonance imaging; FL: fluorescence; PDT: photodynamic therapy; PTT: photothermal therapy; PA: photoacoustic.

#### 4. Conclusions and Outlook

In recent years, crosslinked nanogels have shown great promise in the field of cancer imaging and therapy. Compared with traditional micelles and liposomes, nanogels have a covalently crosslinked nanostructure, endowing nanogels with better physiological stability, multifunctionality and improved drug-release profile. The nanogels usually have a hydrodynamic size of tens to hundreds of nanometers, making them effectively accumulate in tumor sites. In addition, nanogels show good biocompatibility both in vitro and in vivo, indicating their potential in clinical translation. The nanogels can be used for anti-cancer drug and gene delivery. Such drug or gene-loaded nanogels have an improved release profile. In addition, novel therapeutic methods such as EDT can be designed based on the structure of nanogels, providing good therapeutic efficacy with minimized side effect. In addition to drugs, contrast agents can be conjugated or loaded onto nanogels. Such nanogels have been widely applied for imaging-guided cancer therapy. Nanogels loaded with photosensitizers can be used for phototheranostics, while Fe<sub>3</sub>O<sub>4</sub>-coated or Gd-conjugated nanogels are good candidates for MRI. Owing to the multifunctionality of nanogels, activatable chemotherapy-based nanotheranostic systems may also be developed.

In the field of cancer imaging, numerous advantages have been shown from these crosslinked nanogels. Crosslinked nanogels have better stability than micelles and liposomes, which can prevent burst release during circulation, thus improving the tumor accumulation and drug-delivery efficiency. Some nanogels were reported to have higher accumulation in a tumor site compared with other major organs including liver and spleen [57][73], which was seldom reported for micelles and liposomes [74]. In addition, fluorophores can be easily conjugated onto the surface of nanogels by virtue of their multifunctionality. Such a design was superior to encapsulation of fluorophores within nanoparticles as their fluorescence signal may be quenched due to aggregation [75]. Gd

complexes are usually conjugated onto the nanogels for  $T_1$ -weighted MRI. Compared with Gd-conjugated micelles, nanogels may retain their MRI signal better in the circulation owing to their higher physiological stability [70].

In the aspect of cancer therapy, higher tumor accumulation leads to higher drug-delivery efficiency and lower toxicity towards normal tissues. Compared with other surface engineered nanomaterials such as silica nanoparticles [76], nanogels may have better biodegradability, and are easier to develop on-demand DDS. These features make loaded drugs be easily released from nanogels. On the other hand, compared with other biodegradable nanomaterials such as polyester nanoparticles, nanogels usually have higher stability [77]. Thus, the flexibility of structures makes nanogels not only have good physiological stability, but also can release drugs in the desired site.

Although crosslinked nanogels have shown great potential in the field of cancer theranostics, several issues need to be resolved to further push forward the clinical translation of nanogels. As nanogels have a crosslinked structure, they usually have poor biodegradability compared with micelles and liposomes. Thus, the metabolic period may be much longer than micelles or liposomes. Such a process may cause long-term toxicity which hinders the clinical translation of nanogels. To improve such an issue, nanogels constructed by biodegradable materials or crosslinkers can be a rational choice to prepare biodegradable nanogels. Therefore, preparing nanogels with such a feature can be one of the research focuses in future study. Another critical issue for clinical translation is the productivity and reproducibility of nanogel preparation.

## References

1. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. *CA Cancer J. Clin.* 2019, 69, 7–34.
2. Li, J.C.; Pu, K.Y. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. *Chem. Soc. Rev.* 2019, 48, 38–71.
3. Chen, H.M.; Zhang, W.Z.; Zhu, G.Z.; Xie, J.; Chen, X.Y. Rethinking cancer nanotheranostics. *Nat. Rev. Mater.* 2017, 2, 17024.
4. Cheng, L.; Wang, C.; Feng, L.Z.; Yang, K.; Liu, Z. Functional Nanomaterials for Phototherapies of Cancer. *Chem. Rev.* 2014, 114, 10869–10939.
5. Ng, K.K.; Zheng, G. Molecular Interactions in Organic Nanoparticles for Phototheranostic Applications. *Chem. Rev.* 2015, 115, 11012–11042.
6. Ali, I.; Alsehli, M.; Scotti, L.; Scotti, M.T.; Tsai, S.T.; Yu, R.S.; Hsieh, M.F.; Chen, J.C. Progress in Polymeric Nano-Medicines for Theranostic Cancer Treatment. *Polymers* 2020, 12, 598.
7. Li, J.C.; Cui, D.; Huang, J.G.; He, S.S.; Yang, Z.B.; Zhang, Y.; Luo, Y.; Pu, K.Y. Organic Semiconducting Pro-nanostimulants for Near-Infrared Photoactivatable Cancer Immunotherapy. *Angew. Chem. Int. Ed.* 2019, 58, 12680–12687.

8. Jiang, Y.Y.; Pu, K.Y. Multimodal Biophotonics of Semiconducting Polymer Nanoparticles. *Acc. Chem. Res.* 2018, 51, 1840–1849.
9. Yin, C.; Zhen, X.; Fan, Q.L.; Huang, W.; Pu, K.Y. Degradable Semiconducting Oligomer Amphiphile for Ratiometric Photoacoustic Imaging of Hypochlorite. *ACS Nano* 2017, 11, 4174–4182.
10. Zhang, W.S.; Deng, W.X.; Zhang, H.; Sun, X.L.; Huang, T.; Wang, W.J.; Sun, P.F.; Fan, Q.L.; Huang, W. Bioorthogonal-targeted 1064 nm excitation theranostic nanoplatform for precise NIR-IIa fluorescence imaging guided efficient NIR-II photothermal therapy. *Biomaterials* 2020, 243, 119934.
11. Wang, Q.; Xu, J.Z.; Geng, R.Y.; Cai, J.; Li, J.; Xie, C.; Tang, W.H.; Shen, Q.M.; Huang, W.; Fan, Q.L. High performance one-for-all phototheranostics: NIR-II fluorescence imaging guided mitochondria-targeting phototherapy with a single-dose injection and 808 nm laser irradiation. *Biomaterials* 2020, 231, 119671.
12. Zhang, J.J.; Ning, L.L.; Huang, J.G.; Zhang, C.; Pu, K.Y. Activatable molecular agents for cancer theranostics. *Chem. Sci.* 2020, 11, 618–630.
13. Zhen, X.; Zhang, J.J.; Huang, J.G.; Xie, C.; Miao, Q.Q.; Pu, K.Y. Macrotheranostic Probe with Disease-Activated Near-Infrared Fluorescence, Photoacoustic, and Photothermal Signals for Imaging-Guided Therapy. *Angew. Chem. Int. Ed.* 2018, 57, 7804–7808.
14. Cui, D.; Huang, J.G.; Zhen, X.; Li, J.C.; Jiang, Y.Y.; Pu, K.Y. A Semiconducting Polymer Nano-prodrug for Hypoxia-Activated Photodynamic Cancer Therapy. *Angew. Chem. Int. Ed.* 2019, 58, 5920–5924.
15. He, S.S.; Xie, C.; Jiang, Y.Y.; Pu, K.Y. An Organic Afterglow Protheranostic Nanoassembly. *Adv. Mater.* 2019, 31, 1902672.
16. Li, G.; Wang, S.; Deng, D.; Xiao, Z.; Dong, Z.; Wang, Z.; Lei, Q.; Gao, S.; Huang, G.; Zhang, E.; et al. Fluorinated Chitosan To Enhance Transmucosal Delivery of Sonosensitizer-Conjugated Catalase for Sonodynamic Bladder Cancer Treatment Post-intravesical Instillation. *ACS Nano* 2020, 14, 1586–1599.
17. Zhou, E.Y.; Knox, H.J.; Reinhardt, C.J.; Partipilo, G.; Nilges, M.J.; Chan, J. Near-Infrared Photoactivatable Nitric Oxide Donors with Integrated Photoacoustic Monitoring. *J. Am. Chem. Soc.* 2018, 140, 11686–11697.
18. Huang, J.G.; Pu, K.Y. Activatable Molecular Probes for Second Near-Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging. *Angew. Chem. Int. Ed.* 2020, 59, 11717–11731.
19. Hu, X.M.; Tang, Y.F.; Hu, Y.X.; Lu, F.; Lu, X.M.; Wang, Y.Q.; Li, J.; Li, Y.Y.; Ji, Y.; Wang, W.J.; et al. Gadolinium-Chelated Conjugated Polymer-Based Nanotheranostics for Photoacoustic/Magnetic

Resonance/NIR-II Fluorescence Imaging-Guided Cancer Photothermal Therapy. *Theranostics* 2019, 9, 4168–4181.

20. Wang, Q.; Dai, Y.N.; Xu, J.Z.; Cai, J.; Niu, X.R.; Zhang, L.; Chen, R.F.; Shen, Q.M.; Huang, W.; Fan, Q.L. All-in-One Phototheranostics: Single Laser Triggers NIR-II Fluorescence/Photoacoustic Imaging Guided Photothermal/Photodynamic/Chemo Combination Therapy. *Adv. Funct. Mater.* 2019, 29, 1901480.

21. Yang, Z.; Chen, X.Y. Semiconducting Perylene Diimide Nanostructure: Multifunctional Phototheranostic Nanoplatform. *Acc. Chem. Res.* 2019, 52, 1245–1254.

22. Xie, C.; Upputuri, P.K.; Zhen, X.; Pramanik, M.; Pu, K. Self-quenched semiconducting polymer nanoparticles for amplified in vivo photoacoustic imaging. *Biomaterials* 2016, 119, 1–8.

23. Li, J.; Jiang, R.C.; Wang, Q.; Li, X.; Hu, X.M.; Yuan, Y.; Lu, X.M.; Wang, W.J.; Huang, W.; Fan, Q.L. Semiconducting polymer nanotheranostics for NIR-II/Photoacoustic imaging-guided photothermal initiated nitric oxide/photothermal therapy. *Biomaterials* 2019, 217, 119304.

24. Liu, Y.; Li, Z.; Yin, Z.; Zhang, H.; Gao, Y.; Huo, G.; Wu, A.; Zeng, L. Amplified Photoacoustic Signal and Enhanced Photothermal Conversion of Polydopamine-Coated Gold Nanobipyramids for Phototheranostics and Synergistic Chemotherapy. *ACS Appl. Mater. Interfaces* 2020, 12, 14866–14875.

25. Tang, W.; Fan, W.P.; Zhang, W.Z.; Yang, Z.; Li, L.; Wang, Z.T.; Chiang, Y.L.; Liu, Y.J.; Deng, L.M.; He, L.C.; et al. Wet/Sono-Chemical Synthesis of Enzymatic Two-Dimensional MnO<sub>2</sub> Nanosheets for Synergistic Catalysis-Enhanced Phototheranostics. *Adv. Mater.* 2019, 31, 19000401.

26. Wang, X.W.; Zhong, X.Y.; Lei, H.L.; Geng, Y.H.; Zhao, Q.; Gong, F.; Yang, Z.J.; Dong, Z.L.; Liu, Z.; Cheng, L. Hollow Cu<sub>2</sub>Se Nanozymes for Tumor Photothermal-Catalytic Therapy. *Chem. Mater.* 2019, 31, 6174–6186.

27. Cheng, L.; Wang, X.W.; Gong, F.; Liu, T.; Liu, Z. 2D Nanomaterials for Cancer Theranostic Applications. *Adv. Mater.* 2020, 32, 1902333.

28. Wang, C.; Xiao, Y.; Zhu, W.; Chu, J.; Xu, J.; Zhao, H.; Shen, F.; Peng, R.; Liu, Z. Photosensitizer-Modified MnO<sub>2</sub> Nanoparticles to Enhance Photodynamic Treatment of Abscesses and Boost Immune Protection for Treated Mice. *Small* 2020, 16, 2000589.

29. Lin, Z.X.; Jiang, B.P.; Liang, J.Z.; Wen, C.C.; Shen, X.C. Phycocyanin functionalized single-walled carbon nanohorns hybrid for near-infrared light-mediated cancer phototheranostics. *Carbon* 2019, 143, 814–827.

30. Hu, D.R.; Chen, L.J.; Qu, Y.; Peng, J.R.; Chu, B.Y.; Shi, K.; Hao, Y.; Zhong, L.; Wang, M.Y.; Qian, Z.Y. Oxygen-generating Hybrid Polymeric Nanoparticles with Encapsulated Doxorubicin and Chlorin e6 for Trimodal Imaging-Guided Combined Chemo-Photodynamic Therapy. *Theranostics* 2018, 8, 1558–1574.

31. Fusco, L.; Gazzi, A.; Peng, G.T.; Shin, Y.; Vranic, S.; Bedognetti, D.; Vitale, F.; Yilmazer, A.; Feng, X.; Fadeel, B.; et al. Graphene and other 2D materials: A multidisciplinary analysis to uncover the hidden potential as cancer theranostics. *Theranostics* 2020, 10, 5435–5488.

32. Yin, C.; Li, X.; Wen, G.; Yang, B.; Zhang, Y.; Chen, X.; Zhao, P.; Li, S.; Li, R.; Wang, L.; et al. Organic semiconducting polymer amphiphile for near-infrared-II light-triggered phototheranostics. *Biomaterials* 2020, 232, 119684.

33. Yang, Z.; Fan, W.P.; Tang, W.; Shen, Z.Y.; Dai, Y.L.; Song, J.B.; Wang, Z.T.; Liu, Y.; Lin, L.S.; Shan, L.L.; et al. Near-Infrared Semiconducting Polymer Brush and pH/GSH-Responsive Polyoxometalate Cluster Hybrid Platform for Enhanced Tumor-Specific Phototheranostics. *Angew. Chem. Int. Ed.* 2018, 57, 14101–14105.

34. Senthilkumar, T.; Zhou, L.Y.; Gu, Q.; Liu, L.B.; Lv, F.T.; Wang, S. Conjugated Polymer Nanoparticles with Appended Photo-Responsive Units for Controlled Drug Delivery, Release, and Imaging. *Angew. Chem. Int. Ed.* 2018, 57, 13114–13119.

35. Zhen, X.; Xie, C.; Pu, K.Y. Temperature-Correlated Afterglow of a Semiconducting Polymer Nanococktail for Imaging-Guided Photothermal Therapy. *Angew. Chem. Int. Ed.* 2018, 57, 3938–3942.

36. Tyrrell, Z.L.; Shen, Y.Q.; Radosz, M. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. *Prog. Polym. Sci.* 2010, 35, 1128–1143.

37. Owen, S.C.; Chan, D.P.Y.; Shoichet, M.S. Polymeric micelle stability. *Nano Today* 2012, 7, 53–65.

38. Kang, N.; Perron, M.E.; Prud'homme, R.E.; Zhang, Y.B.; Gaucher, G.; Leroux, J.C. Stereocomplex block copolymer micelles: Core-shell nanostructures with enhanced stability. *Nano Lett.* 2005, 5, 315–319.

39. O'Reilly, R.K.; Hawker, C.J.; Wooley, K.L. Cross-linked block copolymer micelles: Functional nanostructures of great potential and versatility. *Chem. Soc. Rev.* 2006, 35, 1068–1083.

40. Huang, H.Y.; Remsen, E.E.; Kowalewski, T.; Wooley, K.L. Nanocages derived from shell cross-linked micelle templates. *J. Am. Chem. Soc.* 1999, 121, 3805–3806.

41. Thurmond, K.B.; Kowalewski, T.; Wooley, K.L. Water-soluble knedel-like structures: The preparation of shell-cross-linked small particles. *J. Am. Chem. Soc.* 1996, 118, 7239–7240.

42. Tian, S.; Liu, G.; Wang, X.; Zhang, G.; Hu, J. pH-Responsive Tumor-Targetable Theranostic Nanovectors Based on Core Crosslinked (CCL) Micelles with Fluorescence and Magnetic Resonance (MR) Dual Imaging Modalities and Drug Delivery Performance. *Polymers* 2016, 8, 226.

43. Garcia, F.P.; Rippe, M.; Companhoni, M.V.P.; Stefanello, T.F.; Louage, B.; Van Herck, S.; Sancey, L.; Coll, J.L.; De Geest, B.G.; Vataru Nakamura, C.; et al. A versatile method for the selective

core-crosslinking of hyaluronic acid nanogels via ketone-hydrazide chemistry: From chemical characterization to in vivo biodistribution. *Biomater. Sci.* 2018, 6, 1754–1763.

44. Seok, H.Y.; Sanoj Rejinold, N.; Lekshmi, K.M.; Cherukula, K.; Park, I.K.; Kim, Y.C. CD44 targeting biocompatible and biodegradable hyaluronic acid cross-linked zein nanogels for curcumin delivery to cancer cells: In vitro and in vivo evaluation. *J. Control. Release* 2018, 280, 20–30.

45. Hubbell, J.A.; Chilkoti, A. Nanomaterials for Drug Delivery. *Science* 2012, 337, 303–305.

46. Pedrosa, S.S.; Goncalves, C.; David, L.; Gama, M. A Novel Crosslinked Hyaluronic Acid Nanogel for Drug Delivery. *Macromol. Biosci.* 2014, 14, 1556–1568.

47. Chacko, R.T.; Ventura, J.; Zhuang, J.M.; Thayumanavan, S. Polymer nanogels: A versatile nanoscopic drug delivery platform. *Adv. Drug Deliv. Rev.* 2012, 64, 836–851.

48. Wang, Q.S.; Gao, L.N.; Zhu, X.N.; Zhang, Y.; Zhang, C.N.; Xu, D.; Cui, Y.L. Co-delivery of glycyrrhizin and doxorubicin by alginate nanogel particles attenuates the activation of macrophage and enhances the therapeutic efficacy for hepatocellular carcinoma. *Theranostics* 2019, 9, 6239–6255.

49. Zhang, Y.N.; Andren, O.C.J.; Nordstrom, R.; Fan, Y.M.; Malmsten, M.; Mongkhontreerat, S.; Malkoch, M. Off-Stoichiometric Thiol-Ene Chemistry to Dendritic Nanogel Therapeutics. *Adv. Funct. Mater.* 2019, 29, 1806693.

50. Sun, Z.; Yi, Z.; Cui, X.X.; Chen, X.Y.; Su, W.; Ren, X.X.; Li, X.D. Tumor-targeted and nitric oxide-generated nanogels of keratin and hyaluronan for enhanced cancer therapy. *Nanoscale* 2018, 10, 12109–12122.

51. Xue, Y.A.; Xia, X.Y.; Yu, B.; Tao, L.J.; Wang, Q.; Huang, S.W.; Yu, F.Q. Selenylsulfide Bond-Launched Reduction-Responsive Superparamagnetic Nanogel Combined of Acid-Responsiveness for Achievement of Efficient Therapy with Low Side Effect. *ACS Appl. Mater. Interfaces* 2017, 9, 30253–30257.

52. Qian, Q.H.; Shi, L.L.; Gao, X.H.; Ma, Y.; Yang, J.P.; Zhang, Z.H.; Qian, J.W.; Zhu, X.Y. A Paclitaxel-Based Mucoadhesive Nanogel with Multivalent Interactions for Cervical Cancer Therapy. *Small* 2019, 15, 1903208.

53. Zhang, Z.H.; Li, Y.J.; Wan, J.X.; Long, P.H.; Guo, J.; Chen, G.S.; Wang, C.C. Preparation of Pt(IV)-crosslinked polymer nanoparticles with an anti-detoxifying effect for enhanced anticancer therapy. *Polym. Chem.* 2017, 8, 2410–2422.

54. Guo, D.B.; Xu, S.T.; Yasen, W.; Zhang, C.; Shen, J.; Huang, Y.; Chen, D.; Zhu, X.Y. Tirapazamine-embedded polyplatinum(iv) complex: A prodrug combo for hypoxia-activated synergistic chemotherapy. *Biomater. Sci.* 2020, 8, 694–701.

55. Ding, F.; Mou, Q.B.; Ma, Y.; Pan, G.F.; Guo, Y.Y.; Tong, G.S.; Choi, C.H.J.; Zhu, X.Y.; Zhang, C. A Crosslinked Nucleic Acid Nanogel for Effective siRNA Delivery and Antitumor Therapy. *Angew. Chem. Int. Ed.* 2018, 57, 3064–3068.

56. Ding, F.; Gao, X.; Huang, X.; Ge, H.; Xie, M.; Qian, J.; Song, J.; Li, Y.; Zhu, X.; Zhang, C. Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy. *Biomaterials* 2020, 245, 119976.

57. Li, H.P.; Yang, X.; Gao, F.; Qian, C.G.; Li, C.Z.; Oupicky, D.; Sun, M.J. Bioreduction-ruptured nanogel for switch on/off release of Bcl2 siRNA in breast tumor therapy. *J. Control. Release* 2018, 292, 78–90.

58. Si, X.H.; Ma, S.; Xu, Y.; Zhang, D.; Shen, N.; Yu, H.Y.; Zhang, Y.; Song, W.T.; Tang, Z.H.; Chen, X. Hypoxia-sensitive supramolecular nanogels for the cytosolic delivery of ribonuclease A as a breast cancer therapeutic. *J. Control. Release* 2020, 320, 83–95.

59. Wu, Q.; He, Z.G.; Wang, X.; Zhang, Q.; Wei, Q.C.; Ma, S.Q.; Ma, C.; Li, J.; Wang, Q.G. Cascade enzymes within self-assembled hybrid nanogel mimicked neutrophil lysosomes for singlet oxygen elevated cancer therapy. *Nat. Commun.* 2019, 10, 240.

60. Kumar, R.; Han, J.; Lim, H.J.; Ren, W.X.; Lim, J.Y.; Kim, J.H.; Kim, J.S. Mitochondrial Induced and Self-Monitored Intrinsic Apoptosis by Antitumor Theranostic Prodrug: In Vivo Imaging and Precise Cancer Treatment. *J. Am. Chem. Soc.* 2014, 136, 17836–17843.

61. Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. *CA Cancer J. Clin.* 2019, 69, 127–157.

62. Zhu, J.; Sun, W.; Zhang, J.; Zhou, Y.; Shen, M.; Peng, C.; Shi, X. Facile Formation of Gold-Nanoparticle-Loaded  $\gamma$ -Polyglutamic Acid Nanogels for Tumor Computed Tomography Imaging. *Bioconju. Chem.* 2017, 28, 2692–2697.

63. Sun, W.J.; Zhang, J.L.; Zhang, C.C.; Wang, P.; Peng, C.; Shen, M.W.; Shi, X.Y. Construction of Hybrid Alginate Nanogels Loaded with Manganese Oxide Nanoparticles for Enhanced Tumor Magnetic Resonance Imaging. *ACS Macro Lett.* 2018, 7, 137–142.

64. Sun, W.J.; Zhang, J.L.; Zhang, C.C.; Zhou, Y.W.; Zhu, J.Z.; Peng, C.; Shen, M.W.; Shi, X.Y. A unique nanogel-based platform for enhanced dual mode tumor MR/CT imaging. *J. Mater. Chem. B* 2018, 6, 4835–4842.

65. Aktan, B.; Chambre, L.; Sanyal, R.; Sanyal, A. “Clickable” Nanogels via Thermally Driven Self-Assembly of Polymers: Facile Access to Targeted Imaging Platforms using Thiol—Maleimide Conjugation. *Biomacromolecules* 2017, 18, 490–497.

66. Li, Q.; Plao, X.K.; Wang, F.C.; Li, X.J.; Yang, J.; Liu, Y.; Shi, L.Q.; Liu, D.B. Encapsulating a Single Nanoprobe in a Multifunctional Nanogel for High-Fidelity Imaging of Caspase Activity in Vivo.

Anal. Chem. 2019, 91, 13633–13638.

67. Xiang, H.; Xue, F.; Yi, T.; Tham, H.P.; Liu, J.G.; Zhao, Y. Cu<sub>2</sub>-xS Nanocrystals Cross-Linked with Chlorin e6-Functionalized Polyethylenimine for Synergistic Photodynamic and Photothermal Therapy of Cancer. *ACS Appl. Mater. Interfaces* 2018, 10, 16344–16351.

68. Zhu, Y.X.; Jia, H.R.; Chen, Z.; Wu, F.G. Photosensitizer (PS)/polyhedral oligomeric silsesquioxane (POSS)-crosslinked nanohybrids for enhanced imaging-guided photodynamic cancer therapy. *Nanoscale* 2017, 9, 12874–12884.

69. Peng, S.J.; Wang, H.; Zhao, W.; Xin, Y.J.; Liu, Y.; Yu, X.R.; Zhan, M.X.; Shen, S.; Lu, L.G. Zwitterionic Polysulfamide Drug Nanogels with Microwave Augmented Tumor Accumulation and On-Demand Drug Release for Enhanced Cancer Therapy. *Adv. Funct. Mater.* 2020, 30, 20001832.

70. Zhang, C.C.; Sun, W.J.; Wang, Y.; Xu, F.; Qu, J.; Xia, J.D.; Shen, M.W.; Shi, X.Y. Gd-/CuS-Loaded Functional Nanogels for MR/PA Imaging-Guided Tumor-Targeted Photothermal Therapy. *ACS Appl. Mater. Interfaces* 2020, 12, 9107–9117.

71. Zou, Y.; Li, D.; Wang, Y.; Ouyang, Z.J.; Peng, Y.C.; Tomas, H.; Xia, J.D.; Rodrigues, J.; Shen, M.W.; Shi, X.Y. Polyethylenimine Nanogels Incorporated with Ultrasmall Iron Oxide Nanoparticles and Doxorubicin for MR Imaging-Guided Chemotherapy of Tumors. *Bioconju. Chem.* 2020, 31, 907–915.

72. Zhai, Y.H.; Ran, W.; Su, J.H.; Lang, T.Q.; Meng, J.; Wang, G.R.; Zhang, P.C.; Li, Y.P. Traceable Bioinspired Nanoparticle for the Treatment of Metastatic Breast Cancer via NIR-Triggered Intracellular Delivery of Methylene Blue and Cisplatin. *Adv. Mater.* 2018, 30, 1802378.

73. Jing, X.; Zhi, Z.; Jin, L.; Wang, F.; Wu, Y.; Wang, D.; Yan, K.; Shao, Y.; Meng, L. pH/redox dual-stimuli-responsive cross-linked polyphosphazene nanoparticles for multimodal imaging-guided chemo-photodynamic therapy. *Nanoscale* 2019, 11, 9457–9467.

74. Lyu, Y.; Fang, Y.; Miao, Q.Q.; Zhen, X.; Ding, D.; Pu, K.Y. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. *ACS Nano* 2016, 10, 4472–4481.

75. Li, Y.H.; Wu, Y.X.; Chen, J.T.; Wan, J.L.; Xiao, C.; Guan, J.K.; Song, X.L.; Li, S.Y.; Zhang, M.M.; Cui, H.C.; et al. A Simple Glutathione-Responsive Turn-On Theranostic Nanoparticle for Dual-Modal Imaging and Chemo-Photothermal Combination Therapy. *Nano Lett.* 2019, 19, 5806–5817.

76. Wibowo, D.; Hui, Y.; Middelberg, A.P.J.; Zhao, C.X. Interfacial engineering for silica nanocapsules. *Adv. Colloid Interfac.* 2016, 236, 83–100.

77. Gonzalez-Miro, M.; Chen, S.X.; Gonzaga, Z.J.; Evert, B.; Wibowo, D.; Rehm, B.H.A. Polyester as Antigen Carrier toward Particulate Vaccines. *Biomacromolecules* 2019, 20, 3213–3232.