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Crosslinked nanogels the structures of which are covalently crosslinked have better physiological stability than
micelles and liposomes, making them more suitable for cancer theranostics. The applications of nanogels in drug
and gene delivery as well as development of novel cancer therapeutic methods are first introduced, followed by the

introduction of applications in optical and multimodal imaging, and imaging-guided cancer therapy.

crosslinked nanogel optical imaging cancer therapy

| 1. Introductio

Cancer is one of the major threats to human lives all over the world [l. Traditional cancer treatment process divides
diagnosis and therapy into different procedures, which is time consuming and requires high cost 28], |n contrast,
cancer theranostics which combines diagnosis and therapy into one system can overcome such disadvantages,
and has shown great potential in the field of cancer treatment (4B Recently, phototheranostics, which based on
optical imaging, have been widely studied because of their unique advantages such as high safety and sensitivity,
low cost and capability of multi-channel imaging BRI Numerous phototheranostic systems based on variety
of materials such as small molecular dyes 1213 gnti-cancer drugs 1415 and biomacromolecules 18 have been
developed. However, as theranostics require the combination of multiple functionalities including imaging and
therapy, complicated synthetic procedures are usually inevitable 2718 Therefore, developing phototheranostic

systems based on multifunctional and facile synthesized materials is in high demand.

Among numerous materials for phototheranostics, nanomaterials have shown great promise and been widely
applied in the field of cancer imaging and therapy 1929 Compared with small molecular dyes or drugs,
nanomaterials can be easily prepared via nano-based preparation methods such as nanoprecipitation and
nanoemulsion 21221231 Some inorganic nanoparticles or 2D nanomaterials have unique optical properties, which
can be used as phototheranostics directly [241125126127] |n addition, different functionalities can be integrated into
nanomaterials by simply doping or linking different moieties 28231 Anti-cancer drugs can also be absorbed or
covalently linked onto such nanomaterials, endowing them with the capability for chemotherapy BB, For organic
nanomaterials, hydrophobic anti-cancer drugs or photosensitizers as well as optical imaging contrast agents can
be encapsulated into micelles or liposomes simultaneously, which is a conventional way to construct
phototheranostic platforms B2B3I34185] Owing to their relatively good biocompatibility, organic nanoparticles have

gained increasing attention in the field of phototheranostics.
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Although organic nanoparticles have been widely applied in cancer imaging and therapy, some drawbacks of
conventional nanoparticles should be overcome. As most organic nanoparticles are micelles and liposomes, they
may dissociate when their concentration decrease lower than the critical micelle concentration 8. Such a feature
makes nanoparticles unstable in harsh conditions such as blood circulation, which further leads to the burst release
of encapsulated drugs or contrast agents 438 To overcome such drawbacks, crosslinked nanogels have been
chosen in the development of phototheranostic systems. Compared with micelles or liposomes, a crosslinked
structure can stabilize the nanogels, leading to the non-dissociable nanostructure [E40ELIA2] - gych structure
makes nanogels keep intact in the circulation, thus resulting in improved biodistribution and better tumor

accumulation [431[44],

| 2. Crosslinked Nanogels for Cancer Therapy

Nanomaterials have been widely used as carriers for drug and gene delivery in the field of cancer therapy 2. As
crosslinked nanogels have the advantages including good stability and environmental responsiveness, nanogels
can be good candidates for nanocarriers 48, The crosslinked structure may prevent the burst release of loaded
drugs. In addition, an activatable drug- or gene-delivery system can be developed by nanogels with environmental
responsiveness 7. In this section, we summarize applications of nanogels for cancer therapy including
chemotherapy, gene therapy and enzyme dynamic therapy. The properties of these nanogels introduced in this
section are summarized in Table 1. The most commonly used anti-cancer drug was doxorubicin (DOX), and it can
be loaded via electrostatic interaction with nanogels. Drugs can be released under specific responsiveness such as
pH, glutathione (GSH) and esterase. However, such method sometimes led to low drug loading capacity. To
improve the drug-loading capacity, drug-crosslinked nanogels were designed, and the drug loading capacity can
reach as high as 60.8%. For gene therapy, therapeutic RNAs were commonly loaded by ionic interaction, and can

be released in a tumor-associated microenvironment.

Table 1. Summary of the nanogels for cancer therapy by loaded drug, loading capacity, responsiveness and animal

study.
Type sl Loadir_\g Responsiveness AU References

Drug Capacity Study
Chemotherapy DOX/GL 1.2% (DOX) pH Yes [48]
DOX 5.7% - No [49]
DOX 54.1% pH/GSH/trypsin Yes [501
DOX 18.2% pH/GSH Yes (54]
TAX 20-30% pH/esterase Yes (52]
PL(IV) 60.8% GSHy/ascorbic Yes (53]

acid
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Type sl Loading Responsiveness AL References
yp Drug Capacity P Study
8.06%
Pt(IV)/TPZ (P1)/9.12% GSH Yes =
(TPZ)

Gene therapy SiIRNA - RNase H Yes (581
SiRNA - pH/RNase H Yes 1561
siBcl2 - DTT Yes =
RNase 23.5% NTR Yes (58]

Enzyme dynamic i ) .0 H-O Yes [59]
therapy 2eme
- - H202 Yes [57]

DOX: doxorubicin; GL: glycyrrhizin; DTT: dithiothreitol; NTR: nitroreductase.

3. Crosslinked Nanogels for Cancer Diagnhosis and Imaging-
Guided Cancer Therapy

Precise and personalized treatment can provide better therapeutic efficiency than traditional therapy, and are the
trends in the field of cancer treatment €%, To achieve such a goal, powerful diagnostic methods are in high demand
as real-time monitoring of the therapeutic process is a fundamental requirement. Thus, development of imaging-
guided cancer therapeutic systems has gained increasing attention in recent years 1. By virtue of the advantages
of crosslinked nanogels, they have been utilized for constructing variety of nanotheranostic systems. In this
section, we summarized the applications of nanogels for cancer imaging and imaging-guided therapy. The general

properties of nanogels discussed in this section were summarized in Table 2.

Table 2. Summary of the nanogels for cancer imaging and imaging-guided therapy by imaging modality,
therapeutic method, responsiveness and animal study.

Imaging Therapeutic . Animal
Type Modality Method Responsiveness Study References
Imaging CT - - Yes (621
T1-MRI - - Yes [63]
T1-MRI/CT - - Yes [64]
FL - - No ol
FL - pH/caspases Yes (66l
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Imaging Therapeutic . Animal
Type Modality Method Responsiveness Study References

Imaging-

guided FL PDT/PTT - Yes (671
therapy

FL PDT - Yes (o8]

FL Chemotherapy Temperature Yes (691

T1-MRI/PA PTT - Yes L0l

T1-MRI Chemotherapy pH Yes [zd]

PA/FL/PT PDT/chemotherapy Laser Yes 22

Fluorescence/T- (73]

PDT/chemotherapy pH/GSH Yes

MRI

CT. X-ray computed tomography; MRI: magnetic resonance imaging; FL: fluorescence; PDT:. photodynamic

therapy; PTT: photothermal therapy; PA: photoacoustic.

4. Conclusions and Outlook

In recent years, crosslinked nanogels have shown great promise in the field of cancer imaging and therapy.
Compared with traditional micelles and liposomes, nanogels have a covalently crosslinked nanostructure,
endowing nanogels with better physiological stability, multifunctionality and improved drug-release profile. The
nanogels usually have a hydrodynamic size of tens to hundreds of nanometers, making them effectively
accumulate in tumor sites. In addition, nanogels show good biocompatibility both in vitro and in vivo, indicating their
potential in clinical translation. The nanogels can be used for anti-cancer drug and gene delivery. Such drug or
gene-loaded nanogels have an improved release profile. In addition, novel therapeutic methods such as EDT can
be designed based on the structure of nanogels, providing good therapeutic efficacy with minimized side effect. In
addition to drugs, contrast agents can be conjugated or loaded onto nanogels. Such nanogels have been widely
applied for imaging-guided cancer therapy. Nanogels loaded with photosensitizers can be used for
phototheranostics, while Fe3zO4-coated or Gd-conjugated nanogels are good candidates for MRI. Owing to the

multifunctionality of nanogels, activatable chemotherapy-based nanotheranostic systems may also be developed.

In the field of cancer imaging, numerous advantages have been shown from these crosslinked nanogels.
Crosslinked nanogels have better stability than micelles and liposomes, which can prevent burst release during
circulation, thus improving the tumor accumulation and drug-delivery efficiency. Some nanogels were reported to
had higher accumulation in a tumor site compared with other major organs including liver and spleen BAIZ2 which
was seldom reported for micelles and liposomes 74 |n addition, fluorophores can be easily conjugated onto the
surface of nanogels by virtue of their multifunctionality. Such a design was superior to encapsulation of

fluorophores within nanoparticles as their fluorescence signal may be quenched due to aggregation 55 Gd

https://encyclopedia.pub/entry/1872 4/11



Crosslinked nanogel for cancer theranostics | Encyclopedia.pub

complexes are usually conjugated onto the nanogels for T;-weighted MRI. Compared with Gd-conjugated micelles,

nanogels may retain their MRI signal better in the circulation owing to their higher physiological stability 9.

In the aspect of cancer therapy, higher tumor accumulation leads to higher drug-delivery efficiency and lower
toxicity towards normal tissues. Compared with other surface engineered nanomaterials such as silica
nanoparticles 78 nanogels may have better biodegradability, and are easier to develop on-demand DDS. These
features make loaded drugs be easily released from nanogels. On the other hand, compared with other
biodegradable nanomaterials such as polyester nanoparticles, nanogels usually have higher stability 4. Thus, the
flexibility of structures makes nanogels not only have good physiological stability, but also can release drugs in the

desired site.

Although crosslinked nanogels have shown great potential in the field of cancer theranostics, several issues need
to be resolved to further push forward the clinical translation of nanogels. As nanogels have a crosslinked structure,
they usually have poor biodegradability compared with micelles and liposomes. Thus, the metabolic period may be
much longer than micelles or liposomes. Such a process may cause long-term toxicity which hinders the clinical
translation of nanogels. To improve such an issue, nanogels constructed by biodegradable materials or
crosslinkers can be a rational choice to prepare biodegradable nanogels. Therefore, preparing nanogels with such
a feature can be one of the research focuses in future study. Another critical issue for clinical translation is the

productivity and reproducibility of nanogel preparation.
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