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1. Anthocyanidins and Anthocyanins

1.1. Chemical Structures and Classification

Anthocyanidins are colored molecules having medium-size and belonging to the class of flavonoids . Actually, 25

different anthocyanidins are known (Figure 1), that differ from each other for the presence of hydroxyl (−OH) and methoxy

(−OCH ) groups bound at the scaffold core (Figure 1) . Consequently, anthocyanidins are grouped into 3-

hydroxyanthocyanidins, 3-deoxyanthocyanidins, and O-methylated anthocyanidins. Cyanidin (Cy), Delphinidin (Dp),

Pelargonidin (Pg), three among the non-methylated anthocyanidins, are the most common in nature. In particular, it was

estimated that 50% of plants producing anthocyanidins have Cy, 12% have Dp, and 10% have Pg . Peonidin (Pn),

Malvidin (Mv), and Petunidin (Pt), belonging to the methylated anthocyanidins, can be also easily found in plants .

Figure 1. Chemical scaffold of anthocyanin compounds and their relative substituents. In the table, the most common

anthocyanidins are reported in bold.

In most of the cases, anthocyanidins are bounded with sugar moieties, forming the corresponding anthocyanins.

Glycosylation is achieved enzymatically following the adding of the sugar portion at the 3rd and/or 5th position (R  and/or

R  subsistent of the chemical structure displayed in Figure 1 of the scaffold . As a consequence of the glycosylation,

anthocyanins have an increased water solubility and stability with respect to the related anthocyanidins . Despite the

most common glycosylation process involves the condensation of monosaccharides such as glucose, galactose,

rhamnose, arabinose, rutinose and xylose, also disaccharides and trisaccharides may be attached in some cases .

Finally, anthocyanins may be also often acylated with organic acids such as p-coumaric, caffeic, and ferulic acids via ester
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bonds usually to the 3-position of the sugar moiety . Consequently, to date more than 500 different anthocyanins that

differ not only for the glycosylation pattern of the scaffold, but also for the presence and position of aliphatic or aromatic

carboxylates are reported. In spite of their great structure variability, the anthocyanins most distributed in plants are those

originated by Cy, Dp, and Pg. They are present in 80% of the leaves, 69% of the fruits, and 50% of the colored flowers 

. On the other hand, anthocyanins formed by Pt, Mv, and Pn, are limitedly distributed .

The conjugated bonds in the chemical scaffold are one of the responsible factors for the light absorption at about 500 nm

. However, also the type of substituents present in the benzyl ring, local pH, state of aggregation and complexation

with other inorganic and organic molecules may contribute to color variation. In particular, it has been observed that

anthocyanins may display almost the chromatic scale .

2. Biosynthesis

Anthocyanidins and anthocyanins are almost exclusively produced by plants, in a branch of the phenylpropanoid pathway

that is also involved in the biosynthesis of other flavonoids  (Figure 2). The enzymes involved in biosynthesis of

anthocyanidins are localized in the endoplasmic reticulum, organized into a multi-enzyme complex named flavonoid

metabolon . The precursor for the synthesis of all flavonoids is the phenylalanine. This amino acid marks the branch

point of primary and secondary metabolism from which the phenyl-propanoid pathway can lead to the synthesis of all

phenolic compounds . As first step of the pathway, phenylalanine is converted by phenylalanine ammonia-lyase (PAL)

in cinnamic acid, which is then further transformed into coumaric acid by the action of cinnamic acid 4-hydroxylase (C4H).

Following the activation catalyzed by the 4-coumarate-CoA ligase (4CL), 4-coumaryl-CoA reacts with three molecules of

malonyl-CoA in a reaction catalyzed by chalcone synthase (CHS). This reaction allows the formation of 4-

hydroxychalcone (ex. naringenin chalcone) and it marks the start of the flavonoid biosynthetic pathway. The 4-

hydroxychalcone is transformed into the respective 7,3′,5′,trihydroxyl-flavone (ex. naringenin) by the action of chalcone

isomerase (CHI). Afterwards, flavanone 3-hydroxylase (F3H) oxidizes 7,3′,5′,trihydroxyl-flavone into flavonol-form (ex.

dihydrokaempferol). Then, dihydrokaempferol is transformed into dihydromyricetin or dihydroquercetin by the action of

flavonoid 3′-hydroxylase (F3′H) or flavonoid 3′,5′-hydroxylase (F3′5′H), respectively. In order to convert the three

hydroflavonols into anthocyanidins, the combined action of dihydroflavonol-4-reductase (DFR) and anthocyanidin

synthase (ANS) is required. The first enzyme yields to the formation of the leucoanthocyanidins, meanwhile the second

one catalyzes the 2-oxoglutaratedependent oxidation of each leucoanthocyanidin into 2-flavan-3,4-diol. These latter

compounds spontaneously evolve to the respective anthocyanidins .

Figure 2. Biochemical pathway for the synthesis of anthocyanidins. PAL: phenylalanine ammonia-lyase; C4H: cinnamic

acid 4-hydroxylase; 4CL: 4-coumarate-CoA ligase; CHS: chalcone synthase; CHI: chalcone isomerase; F3H: flavanone 3-

hydroxylase; F3′H: flavonoid 3′-hydroxylase; F3′5′H: flavonoid 3′,5′-hydroxylase; DFR: dihydroflavonol reductase; ANS:

anthocyanidin synthase (ANS).
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After their synthesis, anthocyanins are transported to the plant vacuole through vesicle trafficking pathway that may

involve, or not, Golgi apparatus . In vacuole, anthocyanidins are converted into the more stable form by the action of

UDP-glucose flavonoid 3-O-glucosyltransferase (UF3GT) or UDP-glucose flavonoid 5-O-glucosyltransferase (UF5GT).

These two enzymes add a sugar moiety respectively at the 3rd and/or 5th position (R  and/or R  subsistent of the

chemical structure displayed in Figure 1 of the chemical scaffold . Finally, the glucoside form of anthocyanidins may

be further modified in many species by glycosylation, methylation, acylation, or condensation with other organic molecules

.

3. Role in Plants

Anthocyanins are one of the major groups of natural pigments and they are responsible for colors of many leaves, flowers,

and fruits . In the past the physiological role of anthocyanins in plants was exclusively ascribed to improve the

reproductive success by facilitating communication between plants and pollinators or seed-dispersers . On the other

hand, in order to justify the occurrence of anthocyanins also in plant districts different from flowers and fruits, it was

mistakenly assumed that they could be an incidental consequence of the flavonoid pathway . Indeed, the intermediate

compounds dihydrokaempferol, dihymyricetin, and dihyquercetin may alternatively be oxidized into respective flavon-3-ols

by flavonol synthase (FLS) as well as used for the production of anthocyanins (Figure 3) . However, it was shown that

some parts of the plants devoid of immediate signaling function contained a considerable amount of these flavonoids 

. On the other hand, anthocyanins have specific histological localization, and their accumulation patterns do not match

those of other pigments .

Figure 3. Alternative biochemical pathway to anthocyanin synthesis. FLS: flavonoid synthase; F3′H: flavonoid 3′-

hydroxylase; F3′5′H: flavonoid 3′,5′-hydroxylase; DFR: dihydroflavonol reductase; ANS: anthocyanidin synthase (ANS).

For these reasons, recently, anthocyanin role in plants was questioned. To date, it is well-known that these molecules are

involved in several defensive processes, including the screen role against UV-B  and plant protection

against high light intensities . However, light stresses are not the only abiotic stress in which anthocyanins seem

to play a key role. Indeed, thanks to their high antioxidant capacity, these flavonoids are involved in all those responses

that contrast oxidative stress induced by heat conditions  and water and nutrient deficit . Moreover,

anthocyanins are also involved in response to biotic stresses, such as mechanical damage due to herbivore attack 

, insect infestation or fungal infection . Table 1 reports the main abiotic and biotic stress conditions in which

variations of the total content of anthocyanins were observed.

Table 1. Documented plant responses to abiotic and biotic stresses that involves anthocyanins.
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Condition Specie References

Abiotic
Stress

Heat Stress

Ipomoea batatas

Daucus carota

Rosa hybrida

Solanum melongena

Saccharum officinarum

Camellia sinensis

Sorghum vulgare

Vitis vinifera

Oryza glaberrima

Actinidia deliciosa

Arabidopsis thaliana

Quercus suber

Light
Stress

Solanum melongena

Phalaenopsis aphrodite

Silene littorea

Arabidopsis thaliana

Chrysanthemum morifolium

Begonia semperflorens

Brassica campestris

Perilla frutescens

Lonicera japonica

Actinidia deliciosa

Malus domestica

Water
Stress

Camellia sinensis

Vitis vinifera

Hibiscus sabdariffa

Malus domestica

Fragaria ananassa

Ocimum basilicum

Sorghum vulgare

Oryza sativa

Punica granatum

Salt Stress

Arabidopsis thaliana

Nicotiana tabaccum

Hibiscus rosasinensis

Fragaria chiloensis

Oryza sativa

Solanum tuberosum
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Condition Specie References

Biotic
Stress

Insect
Attack

Arabidopsis thaliana

Gossypium arboreum

Solanum tuberosum

Sorghum halepense

Fragaria ananassa

Vaccinium myrtillus

Fungi
Attack

Arabidopsis thaliana

Oryza sativa

Fragaria ananassa

Beyond the involvement of anthocyanins to contrast the oxidative stress conditions related to abiotic and biotic menaces,

anthocyanins seem to be also able to contribute to the physiological processes during non-stress conditions, such as the

elevation of leaf temperature ; transport of nutrients and monosaccharides ; and regulation of osmotic

balance . Table 2 reports the main plant physiological pathways in which anthocyanins are involved.

Table 2. Documented plant physiological processes in which anthocyanins are involved.

Plant Physiological Role Specie References

Elevation of Leaf Temperature

Several species

Lactuca sativa

Arabidopsis thaliana

Galax urceolata

Senescence

Several species

Populus euramericana

Arabidopsis thaliana

Brassica oleracea

Actinidia deliciosa

Torenia fournieri

Transportation of Monosaccharides

Several Species

Zea mays

Vitis vinifera

Regulation of Osmotic Balance

Several species

Xerophyta viscosa

Vitis vinifera

Fragaria ananassa

Populus deltoides

Arabidopsis thaliana

Craterostigma wilmsii

Camouflage

Several Species

Theobroma cacao

Mangifera indica

[34][35][36][87]

[88]

[89]

[90]

[91]

[92]

[39][93][94]

[78][85]

[38][95][96]

[70][97] [98][99][100]

[30][84]

[100][101][102][103][104][105]

[106]

[107][108]

[109]

[110][111][112][113]

[114]

[115][116]

[117]

[118]

[119]

[98][99][100]

[120][121]

[122][123][124]

[104][125][126]

[127]

[128][129][130]

[131]

[132]

[55][108]

[127]

[102][133][134][135][136][137][138][139]

[100]

[100]



Plant Physiological Role Specie References

Enhancing of Light Absorption

Several Species

Theobroma cacao

Zea mays

Mangifera indica

4. Distribution in Edible Sources and Contribution in Human Diet

Fruits and vegetables are the only edible sources from which it is possible assuming anthocyanin compounds .

Although among the fruits the anthocyanin content is very variable, generally the level of anthocyanins in fruits is much

higher than in vegetables . The lowest anthocyanin content per 100 g of fresh weight was recorded for grapefruit 

, date , and fig , meanwhile some berries, such as cranberry , chokeberry , huckleberry , blueberry

, raspberry , and bilberry  shows the highest one. Concerning vegetables, the most reach in

anthocyanidins and anthocyanins are red cabbage , purple cabbage , and purple potato . However,

total anthocyanin content in fruits and vegetables considerably varies among the different genera and cultivars, and it is

strongly affected by different light, temperature, and agronomic factors . Figure 4 shows the cluster distribution of

anthocyanins in plant kingdom according to the anthocyanin content reported in Phenol-Explorer Online Database 

. For this analysis, Euclidean distances were calculated by using the average linkage method.

Figure 4. Cluster distribution of anthocyanins in plant kingdom based on the total anthocyanin content according to

Phenol-Explorer Database . Euclidean distances were calculated with average linkage method. Statistical

analysis and graphical representation were made using SPSS v. 24 software. The cluster was generated by using SPSS

ver.24 statistical software.

In the recent years, some flowers were proposed as alternative edible sources of phytochemicals. In order to be included

in human diet, flowers have to be non-toxic and innocuous . Indeed, flowers may contain toxic substances,

including hemaglutinnins, oxalic acid, cyanogenic glycosides, or alkaloids and cause severe damage to the consumers

. However, many flowers can be considered safe, and therefore can be consumed as food. Although flowers are little

known as edible sources, they have been used for over 500 years in Europe and China as herbal medicine . Actually,

they are mainly used for enhancing the aesthetic value of foods, as evidenced by the increasing number of edible flower

cookbooks, culinary magazine articles, and dedicated television segments . Despite edible flowers are still

considered a niche product, they are gaining attention due to their exotic aroma and textures, delicate flavor, attractive

color and phytochemical composition . In particular, edible flowers are a potential source of several bioactive
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compounds, including anthocyanins . Among them, begonia (Begonia tuberhybride), tagete (Tagetes patula),

mini rose (Rosa chinensis), mini daisy (Bellis annua), litoria (Clitoria ternatea), cosmos (Cosmos sulphureus), and cravine

(Dianthus chinensis) are the most known and commercialized .

Apart from their origins and physiological roles in plants, anthocyanidins and anthocyanins seem to play important roles in

human health and well-being . Indeed, their intaking through the consumption of foods rich in these flavonoid

compounds seems to be linked to an improvement of the redox balance thanks to their high scavenging and reducing

activities . On the other hand, interesting properties, such as antitumor, antiatherogenic, antiviral, and anti-

inflammatory effects, decrease of capillary permeability and fragility, inhibition of platelet aggregation and immune

stimulation were reported . The positive effects ascribed to the consumption of fruits and vegetables rich in

anthocyanidins and anthocyanins are not limited to the gastro-intestinal tract. Indeed, anthocyanins resisting to gastric

digestion may be absorbed in the stomach via bilitranslocase-mediated mechanism , or in the intestine

through a mechanism involving the sodium–glucose co-transporter as suggested for other flavonoids .
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