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The recent growth of open data-sharing initiatives collecting lifestyle, clinical, and biological data from Alzheimer's
disease (AD) patients has provided a potentially unlimited amount of information about the disease, far exceeding
the human ability to make sense of it. Integrating Big Data from multi-omics studies provides the potential to
explore the pathophysiological mechanisms of the entire biological continuum of AD. In this context, Artificial
Intelligence (Al) offers a wide variety of methods to analyze large and complex data in order to improve knowledge
in the AD field.

Alzheimer’s disease diagnosis machine learning artificial intelligence

| 1. Introduction

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease that progressively destroys cognitive skills,
up to the development of dementia. The clinical diagnosis of AD is based on the presence of objective cognitive
deficits (which are, typically, prominent memory impairments). In some cases, AD may show atypical presentations,
with impairments in non-amnesic domains (i.e., attention, executive functions, visuo-constructive practice and
language) W. However, AD shares many common clinical features with other neurodegenerative dementia,
including Lewy body dementia 2, frontotemporal disorders [, and vascular dementia, making early and differential
diagnosis difficult, especially in the first stage of the disease &, Finally, the occurrence of co-existing pathologies
is a common feature in those cases of neurodegenerative diseases that share a common pathogenic mechanism,
consisting of extracellular and/or intracellular insoluble fibril aggregates of abnormal misfolded proteins (e.g., the
formation of amyloid plaques, tau tangles, or a-synuclein inclusions). In this context, the system biology approach,
which aims at the integration of clinical and multi-omics data, can help to detect and recognize the
pathophysiological and molecular changes characteristic of AD or other pathologies, as well as the associated

clinical manifestations occurring, in particular, in the pre-clinical stages (€.

Amyloid plaques and neurofibrillary tangles are the neuropathological hallmarks of the disease &l which can be
evaluated in vivo by neuroimaging investigation and cerebrospinal fluid (CSF) biomarker assessment; namely,
considering amyloidf1-42 (AB42), its ratio with amyloid B1-40 (APR42/Ap40), total tau protein (t-tau), and
hyperphosphorylated tau (p-taul81).

As AD is multi-factorial, many conditions can influence the individual risk and age of onset, particularly metabolic
impairments (diabetes mellitus, hypertension, obesity, and low HDL cholesterol), depression, hearing loss,

traumatic brain injury, and alcohol abuse [&. Lifestyle factors such as smoking, low physical activity, and social
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isolation are potentially modifiable, while several of these may have bi-directional relationships and may be early
manifestations, other than risk factors, in the prodromal phase of dementia (19 All of these clinical, biological,
socio-demographic, and lifestyle factors contribute to defining the development of the disease and, therefore, are

useful in trying to understand the still-misunderstood etiology of AD.

Decades of experimental and clinical research have contributed to identify many mechanisms in the pathogenesis
of the disease, such as the -amyloid hypothesis. Clinical and biological data from electronic health records and
multi-omics sciences represent a potentially unlimited amount of information about biological processes, such as
genomes, transcriptomes, and proteomes, which can be explored through Big Data exploitation Bl The rapid
collection of data from tens of thousands of AD patients far exceeds the human ability to make sense of the
disease.

Complex Al-based models can be successful in extracting meaningful information from Big Data; however, as their
complexity increases, it becomes more and more difficult to interpret how they produce their output. Thus, they
have been called black-box models. Making Al explainable is a key problem of Al technological development in
recent years, and is of pivotal importance in healthcare applications, where both patients and clinicians need to
trust research methods to make decisions about people’s health 12, The AD pathology is characterized by high
complexity and heterogeneity, and many authors have demonstrated the absence of etiological uniformity and
diverse treatment suitability for each patient, supporting the need for an accurate individual diagnosis 23I4] |
order to make the most of biological experiments and refine their findings, they have to be supported and followed
by complex biological modeling, based on mathematical and statistical tools such as Artificial Neural Networks 121,
Formalized domain expertise from psychology, neuroscience, neurology, psychiatry, geriatric medicine, biology,
and genetics can be integrated with novel analytic approaches from bioinformatics and statistics to be applied on
Big Data in AD research projects, with the aim of answering detailed questions through the use of predictive
models. These can succeed in answering key questions about promising biomarker combinations, patient sub-
groups, and disease progression, finally leading to the development of effective treatment strategies, helping
patients with tailored medical approaches 18],

In this context, Al technology represents a promising approach to investigate the pathological mechanisms of AD
by analyzing such complex data. In this review, we focus on recent findings using Al for AD research and future
challenges awaiting its application: Will it be possible to make an early diagnosis of AD with Al? Will Al be able to
predict conversion from Mild Cognitive Impairment (MCI) to AD dementia, stratify patients, and identify “malignant”
forms with worse disease progression? Finally, will Al be able to predict the course and progression of the disease
and help in finding a cure for AD?

1.1. Al and the Biomedical Research

Al has recently significantly revolutionized the way that digital data is analyzed and used. Currently, in some
applications, Al is used to perform simple tasks, such as face or speech recognition, and often outperforms human

abilities in those tasks 4. This is definitely a great opportunity to be transferred to medical care, due to the
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potential for fast, low-cost, and accurate automation; for example, in the processing of digital images by Al
algorithms 18, Several studies have been performed with the attempt to ameliorate the knowledge of complex
multifactorial diseases such as AD: Al exploits the features of Machine Learning (ML) and Deep Learning (DL) to
develop algorithms that can be used in the clinical and biomedical fields for the classification and stratification of
patients, based on the integration and processing of a large variety of available data sources, including
neuroimaging, biochemical markers, clinical, and neuropsychological (NPS) data from patients and controls. An
extensive application of Al in the biomedical field is for Computer-Aided Diagnosis (CAD). This kind of application
aims to automate the diagnostic process upon data analysis, potentially contributing to reaching an early and

differential diagnosis of AD or dementia of different etiology (Figure 1).
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Figure 1. The framework of Al in AD research. Single-modality or integrated data can be processed by several
algorithms and tasks, leading to useful outcomes for early and accurate diagnosis, prediction of the course and
progression of disease, patient stratification, and discovery of novel therapeutic targets and disease-modifying

therapies.

ML is a fundamental branch of Al, consisting of a collection of data analysis techniques that aim to generate
predictive models by learning from data, progressively improving the ability to make predictions through experience
(see glossary; Table 1) 22l DL is a sub-field of ML and uses methods that are able to learn relationships between
inputs and outputs by modeling highly non-linear interactions into higher representations, at a more abstract level
(see glossary) [29. Moreover, there are two main categories of predictive models based on ML or DL techniques:
Supervised and unsupervised. In supervised learning, the algorithms learn from labeled data to associate an input
(e.g., cortical thicknesses data) with a specific output (e.g., presence/absence of a disease or neuropsychological
test performance), leading to models that are able to predict the output variable. In unsupervised learning, the
algorithms learn from unlabeled data with the purpose of identifying clusters among the observations, based on
similar features (see glossary); unlike in supervised learning, there are no correct answers and the aim of the

algorithm is to discover structures within variables.

Table 1. Glossary.

Method Definition Details
Machine A collection of data ML models are considered shallow learners, working on data with
Learning analysis techniques hand-crafted features defined through expert-based knowledge.
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Method

Deep
Learning

Supervised
learning

Unsupervised
learning

Classification
task

Regression
task

Clustering

Definition
that aim to generate
predictive models by
learning from data and
improving their ability to
make predictions
through experience.

A sub-field of ML that
uses methods that are
able to learn
relationships between
inputs and outputs by
modeling highly non-
linear interactions.

A ML task defined
through the use of
labeled data sets for
algorithm training.

A set of algorithms
aimed to discover
hidden patterns or data
groupings without the
need for human
intervention.

The algorithm is trained
to predict a class label.

The algorithm is trained
to predict the value of a
continuous variable.

Clustering consists of
partitioning a data set,
in order to find a
grouping of the data
points.

Details
Raw data must be pre-processed before constructing a ML
system, requiring domain expertise to proceed with feature
extraction and engineering, in order to train the algorithm
appropriately. As an example of a ML algorithm, a Support Vector
Machine (SVM) accomplishes the classification task by finding the
hyperplane that, in the multi-dimensional feature space, optimally
separates the data into two (or more) classes.

DL models are different from shallow learners and can elaborate
raw data, thus requiring little or no feature engineering, thanks to
their ability to model complex functions and identify relevant
aspects in the data distribution. DL algorithms are based on
Artificial Neural Networks (ANNSs), which are inspired by the
human brain and can model very complex functions, identifying
important aspects in the features and suppressing irrelevant ones.
As an example of a DL algorithm, a Convolutional Neural Network
(CNN) is composed of nodes organized into layers. It can take an
image as input, elaborate the features of the image through its
layers, and assign a class attribution as output, thus differentiating
between two or more groups.

The algorithms learn to give the right answer, as defined by the

ground truth set, which has labels assigned to the data.An SVM

performing the classification task is an example of an algorithm
trained by supervised learning.

In unsupervised learning, unlike supervised learning, there are no
correct answers and the algorithm’s aim is to discover structures
within variables. The algorithms work with unlabeled
data.Common unsupervised methods include clustering
algorithms and Principal Component Analysis (PCA).

A classical example is the classification of patients affected by a
disease vs. normal controls. The algorithm learns to associate
input data with an output label in a supervised manner, and its

results can be evaluated by metrics such as accuracy score.

An example is the prediction of hippocampus volume as a
numerical quantity. The algorithm learns to associate input data
with an output value in a supervised manner, and its results can
be evaluated by metrics such as the Root Mean Squared Error

(RMSE).

Clustering is one of the most important unsupervised learning
techniques. Its main goal is to reveal sub-groups within
heterogeneous data, in such a way that greater homogeneity is
shown within clusters (rather than between clusters). Clustering
algorithms can lead to the identification of patterns across subjects
or patients that are difficult to find even for an expert clinician.
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Method Definition Details
Overfitting occurs when
the model is too When a model is overfitted, its learned ability to separate between
Overfitting dependent on training two classes does not generalize well to data it has never seen
data to make accurate before, therefore limiting its usability for real-world applications.
predictions on test data.
Model ensembling
consists of combining
multiple ML models, in A single model alone can be weak in generating predictions.
Ensemble . S . L
learnin order to obtain better Combining multiple models can compensate for their individual
g predictive performance weaknesses.
than any of the
constituents alone.
A rvi learnin . - .
supe s_ed e.a 9 In a transfer learning approach, the model is first pre-trained on a
technique in which the .
knowledae previous! source task, then re-trained and tested on a target task. The
Transfer dgep y source task should be related to the target task, with similar
. acquired from the . . .
learning . . relations between the input and output data. In fact, in the pre-
model in one task is . .
training phase, the model gains helpful knowledge for the target
used to solve related
task.
ones.
The Cox proportional
hazards model is a automate,
regression technique ssificati
Cox for investigating the Cox regression gives hazard rates as measures of how factors psication
regression association between influence the risk for an event occurrence (outcome), be it death or ssification

the time of an event infection.

. )., clinical
occurring and one or

more predictor generate

variables. ntrol”), by

analyzing the set of features of a new given example. The regression task instead involves predicting the value of a

variable (e.g., “hippocampus volume” or “biomarker level”’) measured on a continuous scale.

Despite ample research effort, we still do not have a cure capable of modifying and/or halting the course of the
disease. Some clinical trials are ongoing, especially with the use of monoclonal antibodies targeting ApB peptides,
modified AP species, and monomeric as well as aggregated oligomers, which have shown to be safe and have
clinical efficacy in AD patients [21. However, Al pipelines can be applied in automatic compound synthesis in order
to analyze the literature and high-throughput compound screening data, to perform an initial molecular screening
and automated chemical synthesis [22. By updating the Al model after cell- or organoid-based experiments, Al can
be used to propose a new molecular optimization plan and new bioassays can be conducted to evaluate the
biological effects of the compound, thus enabling an automated drug development cycle based on Al design and
high-throughput bioassay, greatly accelerating the development of new drugs 23, Al technology can be used to
repurpose known drugs for treatment of Alzheimer’s disease [22[24125](26] Thjs s a fast, low-cost drug development
pathway, in which Al is used to predict drug repurposing by analyzing large-scale transcriptomics, molecular
structure data, and clinical databases. Finally, Al can be exploited to simplify clinical trials too, both in the design
and implementation phase 22!, Participant selection can be optimized by using Al algorithms on genetic and clinical

data, thus predicting which subset of the population may be sensitive to new drugs 7. Notably, coupling Al with
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data from wearables enables almost real-time non-invasive diagnostics, potentially preventing drop-out at subject
level 28 Although promising and rapidly growing, only few of these Al applications have made it to the clinical
application stage; nonetheless, Al represents a promising technology to support research and, finally, to develop

novel effective therapies 2229,
1.2. Public Databases and Biobanks

The application of Al-based techniques for AD and other diseases research requires extensive data sets,
composed of hundreds to thousands of entries describing subjects over many clinical and biological variables,
which can be employed to develop novel algorithms by analyzing the features of the disease. In the last 20 years,
many open data-sharing initiatives have grown in the field of neurodegenerative disease research BY: and, in
particular, in AD research. Some important data-sharing resources are the Alzheimer's Disease Genetics

Consortium (ADGC, www.adgenetics.org, accessed on 30 May 2021 Date Month Year), Alzheimer’s Disease

Sequencing Project (ADSP, www.niagads.org/adsp/content/home accessed on 30 May 2021), Alzheimer’s Disease

Neuroimaging Initiative  (ADNI, http://adni.loni.usc.edu/ accessed on 30 May 2021), AlzGene

(www.alzgene.org accessed on 30 May 2021), Dementias Platform UK

(DPUK, https://portal.dementiasplatform.uk/ accessed on 30 May 2021), Genetics of Alzheimer's Disease Data

Storage Site (NIAGADS, www.niagads.org/ accessed on 30 May 2021), Global Alzheimer’s Association Interactive

Network (GAAIN, www.gaain.org/ accessed on 30 May 2021), and National Centralized Repository for Alzheimer’s
Disease and Related Dementias (NCRAD, https://ncrad.iu.edu accessed on 30 May 2021) BlE2 Such public

databases and repositories collect biological specimens and data from clinical and cognitive tests; lifestyle,

neuroimages; genetics; and CSF and blood biomarkers from normal, cognitively impaired, or demented individuals,
which can be combined to apply cutting-edge ML algorithms. Moreover, the National Alzheimer’'s Coordinating
Center (NACC) has constructed a large relational database for both exploratory and explanatory AD research, by
use of standardized clinical and neuropathological research data 23; DementiaBank, the component of TalkBank
dedicated to data on language in dementia, provides data sets from verbal tasks such as the Pitt corpus, which

contain audio files and text transcriptions from AD subjects and controls 341351,

In the so-called “Omics era”, several databases of omics data—not limited to or specific for neurodegenerative
diseases—have been established, such as the Gene Expression Omnibus (GEO), which collects functional
genomics data of array- and sequence-based data regarding many physiological and pathological conditions,
including AD, among others 28 Finally, UK Biobank collects and stores healthcare databases and associated
biological specimens for a wide range of health-related outcomes from a large prospective study including over
500,000 participants 37,

In the AD field, public and private databases represent the substrate and the source for Al to facilitate a more

comprehensive understanding of disease heterogeneity, as well as personalized medicine and drug development.

| 2. Al for AD Diagnosis
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Al technology, mainly ML algorithms, can handle high-dimensional complex systems that exceed the human
capacity of data analysis. ML has been used in the CAD of many pathologies, including AD, by combining
electronic medical records, NPS tests, brain imaging, and biological markers, together with data obtained by novel
developed tools (e.g., wearable sensors) for the assessment of executive functions (Figure 2). Magnetic
Resonance Imaging (MRI), Positron Emission Tomography (PET), 18F-fluorodeoxyglucose-Positron Emission
Tomography (FDG-PET), and Diffusion Tensor Imaging (DTI) provide detailed information about the brain structure
and functionality, allowing for the identification of features supporting the diagnosis, such as atrophy, amyloid
deposition, or microstructural damages [B8l22l Moreover, neuroimages can discriminate pathological processes not
due to AD that can lead to cognitive decline (e.g., brain tumors or cerebrovascular disease). Several studies have
demonstrated that markers of primary AD pathology (CSF AP1-42, total tau and p-taul81, amyloid-PET),
neurodegeneration (structural MRI, FDG-PET), or biomarker combinations can be integrated into complex tools for
diagnostic or predictive purposes 44421431 Of interest, polymorphism in the apolipoprotein E (APOE) gene is
the strongest genetic risk factor in the sporadic form of AD, which has an added predictive value, with the APOEe4
allele conferring an increased risk of early age of onset, while the APOEe2 allele confers a decreased risk, relative

to the common APOEEe3 allele 4],
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Figure 2. Schematic representation of CAD tools functioning. After collection, data are elaborated, in order to be
made ready for the analysis using Al-based techniques. The outcoming result is the assignment of a class, with

potential value for diagnostic evaluation.

So far, the first CAD tools for AD were constructed through the use of Al methods for the analysis of brain imaging
[45l46]  Analyzing MRI data from the OASIS database 47, a feature extraction and selection method called
“eigenbrain”, which is carried out using PCA (see glossary), was used to capture the characteristic changes of
anatomical structures between AD and NC; namely, severe atrophy of the cerebral cortex, enlargement of the
ventricles, and shrinkage of the hippocampus. The applied SVM algorithm achieved a mean accuracy of 92.36%
for an automated classification system of AD diagnosis, based on MRI data 8. For instance, by using FDG-PET of
the brain, a DL algorithm for the early prediction of AD was developed, achieving 82% specificity and 100%

sensitivity at an average of 75.8 months prior to the final diagnosis 42,

The majority of ML models for classifying AD from NC are trained with neuroimaging data, which have the

advantage of high accuracy B9, but limitations associated to their high cost and lack of diffusion in non-specialized
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centers. A large group of studies have focused on the identification of fluid marker panels as potential screening
tests. In addition to AB- and tau-related biomarkers, novel candidate markers according to other mechanisms of AD
pathology have been investigated in experimental and meta-analysis studies, in order to optimize the predictive

modeling.

A recent study has applied ML algorithms to evaluate data on novel biomarkers that were available on PubMed,
Cochrane Systematic Reviews, and Cochrane Collaboration Central Register of Controlled Clinical Trials
databases. Experimental or review studies have investigated biomarkers for dementia or AD using ML algorithms,
including SVM, logistic regression, random forest, and naive Bayes. The panel included indices of synaptic
dysfunction and loss, neuroinflammation, and neuronal injury (e.g., neurofilament light; NFL). An algorithm,
developed by integrating all the data from such fluid biomarkers, has been shown to be capable of accurately

predicting AD, thus achieving state-of-the-art results (211,

To the end of designing a blood-based test for identifying AD, the European Medical Information Framework for
Alzheimer’s disease biomarker discovery cohort conducted a study using both ML and DL models. Data used for
modeling included 883 plasma metabolites assessed in 242 cognitively normal individuals and 115 patients with
AD-type dementia, and demonstrated that the panel of plasma markers had good discriminatory power and have
the potential to match the AUC of well-established AD CSF biomarkers. Finally, the authors concluded that it can

be commonly included in clinical research as part of the diagnostic work-up, with an AUC in the range of 0.85-0.88
52,

Moreover, Al has the potential to integrate data obtained through the use of new technologies, such as devices
designed for the evaluation of language and verbal fluency or executive functions in healthy or mildly impaired
individuals. A system for acoustic feature extraction over speech segments in AD patients was developed, by
analyzing data from DementiaBank’s Pitt corpus data set 3483l The acoustic features of patient speeches have
the advantage of being cost-effective and non-invasive, compared to imaging or blood biomarkers, and can be
integrated to develop screening tools for MCI and AD. Moreover, another system has exploited a digital pen to
record drawing dynamics, which can detect slight signs of mild impairment in asymptomatic individuals 23, The
ability of this pen was evaluated in patients performing the Clock Drawing Test (CDT), which allowed for the
identification of subtle to mild cognitive impairment, with an inexpensive and efficient tool having promising clinical

and pre-clinical applications.

| 3. Prediction of MCI-to-AD Conversion

Diagnosing probable AD in a subject with moderate—severe cognitive decline or evidence of cortex atrophy is
usually not difficult for a skilled neurologist when appropriate data are available. Therefore, it is not surprising for an
Al model to solve the task of AD vs. NC subject classification with high accuracy, when taking into account NPS
test results or neuroimaging data 24!, To date, several predictive models have been developed 4I55I56157][58][59](60]
(61](62][63][64](65][66](67][68][69][70[71] 'yije|ding peak accuracy values of 100% in AD vs. NC classification 4. In contrast,

a much more challenging task for Al is to identify individuals with subjective or mild impairment who will develop AD
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dementia, with respect to stable MCI or MCI not due to AD, given the shaded differences and the overlapping

symptoms in the clinical or biological variables defining these groups in the early phases 72,

Algorithms designed to predict MCI-to-AD conversion aim to classify MCI patients into two groups: those who will
convert to AD (MCI-c) within a certain time frame (usually 3 years) and those who will not convert (MCI-nc). Yearly,
about 15% of MCI patients convert to AD BAZ3] and, thus, early and timely identification is crucial, in order to

ameliorate the outcome and slow the progression of the disease.

Several Al-based models test the accuracy of combinations of non-invasive predictors, as well as socio-

demographic and clinical data, in order to develop effective screening or predictive tools.

By using the ADNI data set, socio-demographic characteristics, clinical scale ratings, and NPS test scores have
been used to train different supervised ML algorithms and, finally, develop an ensemble model utilizing them (see
glossary). This ensemble learning application demonstrated a high predictive performance, with an AUC of 0.88 in
predicting MCI-to-AD conversion 81l and has the advantage of using only non-invasive and easily collectable
predictors, rather than neuroimaging or CSF biomarkers, thus enhancing its potential use and diffusion in clinical
practice.

As for CAD systems, both MRI and PET data can be independently modeled by ML algorithms, yielding good
predictive accuracy; however, integrating neuroimaging data with other variables, such as cognitive measures,
genetic factors, or biochemical changes, can significatively enhance the model performance, as is generally
expected when integrating multi-modal data (Figure 3) [BA63I6SIZOI7L] For example, the integration of MRI with
multiple modality data, such as PET, CSF biomarkers, and genomic data, reached 84.7% accuracy in an MCI-c vs.
MCI-nc classification task. When only single-modality data was used, the accuracy of the model was lower than the
all-modalities implementation (63,
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Figure 3. Predictive ML ensemble method for the conversion of MCI to AD based on multi-modal data (i.e., socio-
demographics, clinical, NPS, biological fluids, and imaging data). The system uses a feature transformation and
selection phase followed by data integration, allowing for more efficient use of variables. The final ensemble of

several different ML models provides accurate final predictions of AD or AD conversion.

Different data modalities reflect the AD-related pathological markers that are complementary to each other, which
can be concatenated as multi-modal features as input to an ML model for classification 47376l Notwithstanding,
the modality with the larger number of features may weigh more than the others when training the algorithm,
inducing bias in the interpretation. In order to overcome this limitation and extract multi-modal feature
representations, DL architectures can be used, which do not need feature engineering, due to their ability to non-

linearly transform input variables 7,

A DL model for both MCI-to-AD prediction and AD vs. NC classification was trained on data from the ADNI
database, including demographic, NPS and genetic data, APOE polymorphism, and MRI. The model processed all
the data in a multi-modal feature extraction phase, aiming to combine all data together and obtain a classification

output. The AD vs. NC classification task achieved by this model reached performances close to 100%, as
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expected; whereas, for the MCI-to-AD prediction task, the AUC and accuracy were 0.925 and 86%, respectively
54,

Some models transferred the knowledge in performing AD vs. NC classification to a prediction task—that is, MCI-
to-AD conversion—using transfer learning methodology (see glossary). A system with the highest capacity of
discriminating AD from NC by analyzing three-dimensional MRI data was recently tested for MCI-to-AD prediction,
reaching a high accuracy (82.4%) and AUC (0.83). This finding demonstrated that information from related
domains can help Al to solve tasks targeted at the identification of patients at risk of developing AD-related
dementia (53,

An interpretation system was embedded with a classification model for both early diagnosis of AD and MCI-to-AD
prediction, in order to increase the impact in clinical practice. This model integrates 11 data modalities from ADNI,
including NPS tests, neuroimaging, demographics, and electronic health records data (e.g., laboratory blood test,
neurological exam, and clinical symptom data). The model outputs a sentence in natural language, explaining the
involvement of attributes in the model's classification output. The model achieved a good performance while
balancing the accuracy—interpretability trade-off in both AD classification and MCI-to-AD prediction tasks, allowing
for actionable decisions that can enhance physician confidence, contributing to the realization of explainable Al
(XAl) in healthcare 8],

Most of the Al models for AD are mainly built on biomarkers such as brain imaging, often with the use of Ap and tau
ligands, AB- or tau-PET, as well as biomarkers in CSF, which have high accuracy and predictive value; however,
their invasive nature, high cost, and limited availability restrict their use to highly specialized centers [Z21[80[811[82] A
possible turning point has emerged with the recent development of ultra-sensitive methods for the detection of
brain-derived proteins in blood, making it possible to measure NFL B3 AB42, and Ap40 [B4l83l and tau and P-tau in
plasma [BEIE7] The accuracy of plasma P-tau combined with other non-invasive biomarkers for predicting future AD
dementia was recently evaluated in patients with mild cognitive symptoms from ADNI and the Swedish BioFINDER
cohort, including patients with repeated examinations and clinical assessments over a period of 4 years to ensure a

clinical diagnosis (https://biofinder.se/ accessed on 30 May 2021). The prediction included not only the

discrimination between progression to AD dementia and stable cognitive symptoms, but also versus progression to
other forms of dementia. The accuracy of plasma biomarkers was compared with corresponding markers in CSF,
and with the diagnostic prediction of expert physicians in memory clinics, based on the assessment at baseline of
extensive clinical assessments, cognitive testing, and structural brain imaging 2. Plasma P-tau in combination
with the other non-invasive markers showed a higher value in predicting AD dementia within 4 years, with respect
to clinical-based prediction (AUC of 0.89-0.92 and 0.72, respectively). In addition, the biomarker combination
showed similarly high predictive accuracy in both plasma and CSF, making plasma an effective alternative to CSF,

thus providing a tool to improve the diagnostic potential in clinical practice 87,
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