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Protein calories consumed by people all over the world approximate 15-20% of their energy intake. This makes
protein a major nutritional imperative. Today, we are facing an unprecedented challenge to produce and distribute
adequate protein to feed over nine billion people by 2050, in an environmentally sustainable and affordable way.
Plant-based proteins present a promising solution to our nutritional needs due to their long history of crop use and
cultivation, lower cost of production, and easy access in many parts of the world. However, plant proteins have
comparatively poor functionality, defined as poor solubility, foaming, emulsifying, and gelling properties, limiting
their use in food products. Relative to animal proteins, including dairy products, plant protein technology is still in its
infancy. To bridge this gap, advances in plant protein ingredient development and the knowledge to construct plant-

based foods are sorely needed.

plant proteins future foods animal alternatives nutrition

| 1. Introduction

With global populations projected to increase above nine billion people by 2050 [, we face an unprecedented
challenge to produce and distribute adequate food to all of mankind. Apart from first meeting our calorie needs, the
second most important macronutrient needed for human survival is protein. Protein production is a major concern
because traditional animal protein sources require an intensive amount of land and resources 2. Plant-based
proteins represent a promising solution due to their long history of crop use and cultivation, lower cost of
production, and easy access in many parts of the world. Plant proteins are also more environmentally sustainable
B8l However, in addition to lower protein quality, plant proteins also have comparatively poor functionality, defined
as poor solubility, foaming, emulsifying, and gelling properties, limiting their use in food products. Relative to animal
proteins, including dairy products, plant protein technology is still in its infancy. To bridge this gap, advances in
plant protein ingredient development and the knowledge to construct plant-based foods are sorely needed.

This review is an attempt to stimulate interest and presents a roadmap to accelerate plant protein science and
technology, focusing on plant protein ingredient development and future food creation (Figure 1). In each area, the
current state of the art is briefly presented, and new research directions are highlighted. The purpose of this review
is not to replicate what has been done, but to inject fresh ideas and to foster new thinking. Readers interested in
more detailed discussions about various plant protein topics are referred to prior excellent reviews HIEIBI7IEIR]
This paper focuses on manipulating plant protein structures during (a) protein extraction, (b) fractionation, and (c)
modification. To create novel plant-based foods, important considerations such as protein—polysaccharide

interactions, the inclusion of plant protein-generated flavors, and some novel techniques to structure plant proteins
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are discussed. Finally, the attention to nutrition as a compass to navigate the plant protein roadmap is also

considered.
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Figure 1. A roadmap to accelerate plant protein science and technology, focusing on plant protein ingredient

development and future food creation.

Although the focus of this review on plant proteins is in the context of advanced nations, it is important to recognize
that over one billion people may suffer from protein deficiency 9. This problem may be more apparent in South
Asia and Africa. We therefore hope that this review will also stimulate scientists to consider how they may develop

low-cost alternative protein sources for consumption by people in developing nations.

| 2. Creating Future Foods Using Plant Proteins

The previous sections have described the gaps in plant protein ingredient science and technology. However, we
usually eat foods, and not individual ingredients. After obtaining highly functional plant proteins, the challenge is to
transform these ingredients into delicious and nutritious foods. The following sections describe some important
factors: the role of protein—polysaccharide interactions, the ability to structure plant proteins into fibers and gels, the

inclusion of flavors derived from plant proteins, and nutrition to guide the development of plant-based foods.

2.1. Protein—-Polysaccharide Interactions

Most foods are a complex mixture of various components. In addition to proteins, polysaccharides make up the
predominant component in most plant-based ingredients. Polysaccharides are sugar polymers linked by glycosidic
bonds and include a vast family such as starch, cellulose, pectins, agars, carrageenans, alginates and gums 111,
By capitalizing on the natural polysaccharides found in many plant protein sources, less-refined plant ingredients
could be utilized, because polysaccharides also form the major building blocks in food products as structuring and
stabilizing agents through their thickening, emulsifying, and gelling properties 2. When used in combination with
proteins, their functionality can be further expanded through mutual biopolymer interactions 2. Hence, there is
great interest in understanding and controlling protein—polysaccharide interactions to design plant-based foods

such as plant-based milks, ice cream and pudding.
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From a search of the literature, a total of 49 articles relating to plant proteins with polysaccharides were found
published between 1990 and 2021, with the majority (30 articles) published in the last five years. Although this is
reflective of the present emphasis on plant protein research, the number of studies is still a small fraction of the
entire plant protein research field. Hence, there is a great opportunity to explore deeper into this area. In addition to
advancing basic knowledge, polysaccharides could help overcome some functional shortcomings of plant proteins,
with the potential to replace animal proteins 1423l The following sections summarize the key movements in this

area.

The solubility of plant proteins is relatively low; therefore, the addition of polysaccharides has been employed to
improve overall biopolymer solubility, and this is often coupled with a processing or modification step. Some
examples include simple complexation 287 sonication 18129 and conjugation (222111221 Most notably, some
authors report that the biopolymer solubility improved close to the protein isoelectric point 8] with minimum protein
solubility shifting towards more acidic regions 18, This is likely due to a change in net biopolymer surface charges
upon complexation and modification. The shift in the apparent biopolymer isoelectric point will be useful for
developing acidic beverages with high protein content, to reduce the precipitation of plant proteins. This strategy

deserves further examination such as including other types of processing methods.

In addition to solubility, polysaccharides also improve the viscosity 23124 foaming LZ[23[28127] emulsifying (28129
[30J[31][32][33][34][35](36] gnq gelling [B7IE8IB40I4LI42)43] properties of plant proteins. Although the alteration of
biopolymer interfacial properties would have obvious effects on foaming and emulsifying properties, an interesting
approach is to leverage on the poor solubility of plant proteins, to create insoluble plant protein—polysaccharide
particles as Pickering emulsion stabilizers 2233 Furthermore, it is important to note that processing plays an
important role. For example, the thermal treatment of plant protein—starch mixtures led to a mixed protein—starch
gel network [4445]  \whereas high-pressure processing resulted in starch granules remaining intact and
ungelatinized, acting as a filler in the pressure-induced protein gel matrix #2. High-pressure processing can also
kinetically arrest protein—polysaccharide phase separation through pressure-induced gelation, because the
transmission of hydrostatic pressure is quasi-instantaneous compared to thermal gradients found in conventional

heat processing. This suggests promising directions to explore further.

Polysaccharides do not always improve plant protein performance 48, In some cases, it may even worsen their
properties (e.g., reducing solubility and foaming capacity due to the formation of insoluble electrostatic complexes
[47)). More work is needed to understand how these situations occur. In addition to environmental factors such as
pH, biopolymer concentrations and ratio, and ionic strength of the system, some intrinsic factors influencing
protein—polysaccharide interactions include the shape of the plant proteins. For example, globulins are spherical
and highly charged compared to the more extended and charge-diffused gliadins; these differences can affect the
interactions and phase separation with various polysaccharides 8], Another important deliberation is the natural
state of the protein. As discussed previously, most commercially available plant protein isolates tend to be largely
denatured, and it has been shown to affect the interactions and resultant properties with polysaccharides 2. To
round off this section, other active research areas include complex coacervation [BAUBLIB2IE3|B4IS5]56] gng

applications in encapsulation BZIB8I59][60]
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| 3. Structuring Plant Proteins
3.1. Formation of Fibrous Structures

Replicating the characteristics of muscle tissue comprising muscle fibers, connective tissue, and adipose tissue
arranged into complicated hierarchical systems with viscoelastic textural characteristics has proven challenging.
The physicochemical and sensory characteristics of traditional meats are largely determined by the structural
arrangement of these tissues. During cooking, the thermally unfolded proteins are cross-linked into a continuous
gel structure B2 The firmness and elasticity of the gel are due to the increased hydrogen bonding during cooling.
These structural components are responsible for adhesiveness, viscoelasticity and juiciness 2. In the plant
protein industry, the widely used plant proteins are soy, pea and wheat owing to their availability, cost, and
processing functionality. Plant proteins are globular, which does not allow for the formation of a meat-like fibrous
texture. Having said that, physical modifications such as extrusion and fiber spinning are required to convert native
globules into fibers. Soy (140-375 kDa) and pea (150-400 kDa) have a high molecular weight and high surface
hydrophobicity, which undergo structural alterations to form polymers during physical modification, and can
therefore be texturized to produce products with textural qualities comparable to meat. Mung bean and chickpea
isolates presented good gelling properties and formed heterogeneous and porous networks when mung bean flour
was extruded to make meat analogue products 83, Wheat has a significant amount of gluten and possesses
special film-forming characteristics that result in meat-like fibers 4. Wheat gluten is also used in combination with
legume proteins, which contributes to meat-like chewiness €2, Due to the physicochemical differences between
animal and plant proteins, it is difficult to reproduce the complex structure of meat fibers, i.e., highly organized fine
texture and the water-binding capacity of meat to give plant-based alternatives a meat-like mouthfeel. A potential

method to create fibrous structures is thermomechanical processing.

The fibrous structuring of plant proteins using thermomechanical processing can be classified under two main
principles. The first principle is based on phase separation within a multi-phase protein mixture 867 The
dispersed phase acquires a spherical droplet morphology under interfacial tension and undergoes deformation—
elongation—solidification to form anisotropic structures in the direction of the applied shear (68189 A continuous
protein phase possessing intrinsic properties (e.g., molecular composition, structure, and conformation) can
acquire anisotropy during structuring, but does not have a dispersed phase that may impart structural anisotropy to
the protein system. For instance, Krintiras et al. reported that soy protein isolate could be dispersed in a continuous
wheat gluten matrix to form anisotropic structures, after shearing in a Couette cell 9. In recent years, Mattice and
Marangoni and Chiang et al. developed a more affordable technique using less sophisticated equipment, known as
protein mechanical elongation methods [B8IlZl These methods demonstrated potential in forming anisotropic
structures using zein or wheat gluten by stretching and orientating the fine fibrils of the proteins (Figure 2). Further
studies are recommended to understand the suitability (e.g., self-assembled networks) of protein ingredients, and
to optimize the process conditions.
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Figure 2. Schematic illustration of the mechanical elongation method in two steps to produce meat analogues and

resultant microstructures. Adapted from (68! with permission.

The second principle is based on the complex conformational changes and molecular interactions of the protein
upon thermomechanical processing under high-moisture (40-80%) conditions such as extrusion 2. As mentioned
in the previous section, extrusion causes protein unfolding, with partial uncoiling of the secondary structure and a
complete loss of tertiary structure 2. Meanwhile, the hydrophobic and free SH groups that were initially buried
inside the native protein are exposed. The shearing from the extrusion aligns the uncoiled protein molecules in the
direction of flow, resulting in a three-dimensional network structure [€8l. The texturization phase inside the cooling
die initiates the solidification and formation of fibrous structure through the inter- and intra-molecular aggregation of
the proteins. Many studies had been conducted on different sources of plant proteins. In recent years, Chiang et al.
studied the effect of animal proteins (i.e., Maillard-reacted beef bone hydrolysate, MRP) with soy protein and wheat
gluten to form extruded meat alternatives 74, The inclusion of MRP not only increased the protein content of the
meat alternatives, but also increased the sensory profiles of the meat alternatives. Further work could focus on
using meaty flavors generated from plant proteins to increase the protein content and flavor profile of meat

analogues.
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3.2. Formation of Gels

In addition to anisotropic fibrous structures, many foods are structured in the form of homogenous gels. These
include yogurts, cheeses, tofu, tempeh, etc. Protein gelation occurs via various mechanisms. Globular protein
gelation involves protein denaturation, aggregation, and network formation, whereas casein gels proceed via the
aggregation of casein micelles. There are different methods to induce gel formation, including heat gelation, cold
gelation by pH change (acidification, pH shift, fermentation), the addition of salts, enzymatic cross-linking, or
pressure-induced gelation. Various types of gels can also be formed, such as hydrogels, oleogels (oil gels),
aerogels and emulsion gels. Readers are referred to the excellent review by Cao and Mezzenga for a
comprehensive examination of food gels [Z3],

Plant protein gelation has long been utilized in traditional foods such as tofu and tempeh. One active area is the
use of other plant proteins beside soy to produce traditional foods. Some examples include tofu and bean curds
made from pea and various legumes 87778 Another active frontier is the development of plant-based yogurt and
cheese analogues /2, The wide variety of cheese styles with different textures and melt-stretch properties require
different approaches to create. Some workers incorporate both tofu- and cheese-making steps involving the
coagulation, pressing and fermentation of curds Y. A recent study explored the use of zein to provide stretchability
in plant-based cheese L. Traditional methods may not be optimal for plant protein ingredients; therefore, this
presents opportunities to rethink the processes. For example, plant-based yogurt products presently adopt the
traditional fermentation of plant-based milks 2. Often, the acidified plant protein gels are weak and experience
phase separation B3, Sim et al. demonstrated a novel approach to structure plant-based yogurts using high-
pressure processing B4, enabling separate operations to generate flavor and texture (Figure 3). In addition to

creating plant-based animal alternatives, new product categories and unit operations should be explored.
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Figure 3. A proposed plant-based yogurt-making process using biotransformation for optimized flavor production

and high-pressure processing (HPP) for consistent texture generation. From 841,

Notably, most traditional foods structured by proteins are in the form of either hydrogels or emulsion gels. This is
unsurprising, because proteins tend to have biological activity only in aqueous environments. In the design of
future plant-based foods, a main challenge is mimicking the texture and mouthfeel of animal-based fats, because
most plant-based lipids exist in the form of liquid oils. Solid fats also contain saturated fats of which excessive
consumption has been associated with elevated cardiovascular disease risk and could lead to other health
complications 82, In contrast, oleogels have been found to reduce postprandial insulinemia and lipidemia [B81(E71[88]
(891 By structuring plant oils into oleogels, plant-based lipids could be made to behave similarly to animal fat, for
example, in plant-based meats 29, The behavior of oleogels in structured plant proteins will be an important area
of study, for example, to develop unique marbling in high-value meat analogues such as Wagyu beef. Proteins do
not easily form networks in oil; therefore, it is challenging to use proteins as oil structurants. As such, most
approaches use indirect methods such as foam-templated, emulsion-templated, hydrogel-templated, and solvent

exchange procedures 2. More work is needed on protein-based oleogels, especially using plant proteins.
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2.3. Flavors Generated from Plant Proteins

Flavor is one of the sensory attributes that affects a consumer’s eating quality and food purchasing decision.
Numerous studies on meaty flavor chemistry have discovered thousands of volatile compounds from meat or
model systems consisting of meat ingredients. Due to the rising trend in alternative proteins, there is interest in
developing this meaty flavor from non-meat sources such as plant proteins. These meaty flavors can be generated
via the Maillard reaction, a process whereby free amino compounds (e.g., amino acids or peptides) and reducing
sugars (e.g., pentoses or hexoses) are reacted together under specific conditions to produce melanoidins 22.. The
plant proteins are broken down into amino acids and peptides through enzymatic hydrolysis to generate these

meaty flavors.

The most abundant flavor compounds formed during the Maillard reaction are aliphatic aldehydes, ketones,
diketones, and lower fatty acids 3. However, heterocyclic compounds containing oxygen, nitrogen, sulfur, or
combinations of these atoms are much more numerous and play a significant role in the flavor development of
thermally processed foods. The development of a meaty flavor is often influenced by reacting sulfur-containing
amino acids (e.g., cysteine) with reducing sugars, where pentoses such as ribose or xylose are preferably used
94 The chemical reaction between cysteine and reducing sugars is believed to be the main pathway for the
formation of meaty flavor for most food products. The dicarbonyl compounds formed during the Maillard reaction
catalyze the Strecker degradation of cysteine to generate mercaptoacetaldehyde, acetaldehyde and hydrogen
sulfide as the primary degradation products [22. These Strecker degradation products then start a series of

reactions that lead to the formation of meaty flavor compounds.

There have been published reports using several plant proteins to generate meaty flavors such as pea protein 28],
quinoa protein B4, flaxseed protein 28 soybean protein 29100 etc. Xylose was widely reported as the reducing
sugar used for the Maillard reaction, except for a combination of sugars (ribose, xylose, arabinose, fructose,
glucose and galactose) used by Zhou et al. when reacting with pea protein hydrolysates 26, Based on the gas
chromatography—mass spectroscopy analysis, several aroma compounds such as furans, pyrazines, ketones,
aldehydes, and others were detected from the Maillard reaction products (MRPs). Both Wei et al. [28! and Fadel et
al. 2 reported the identification of 2-methyl-3-furanthiol, an odorant compound characterized with a meaty, sweet
and sulfurous aroma in the MRPs 22, This compound was formed by the Maillard reaction of cysteine and reducing
sugar in a model system. However, these authors also reported the addition of sulfur-containing compounds such
as cysteine, taurine and thiamine together with the protein hydrolysates and reducing sugars in heat treatment for
the Maillard reaction [28IR7I[98I199][100] Fyrther work could be conducted to avoid these sulfur-containing compounds
and only use the free amino acids or peptides from the plant protein hydrolysates to react with the reducing sugar.

| 3. Conclusions

This review has presented a roadmap to accelerate plant protein science and technology, focusing on plant protein
ingredient development and the creation of delicious and nutritious plant-based future foods. The areas for further

improvement include plant protein extraction, fractionation, and modification. More research is also needed in
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understanding plant protein—polysaccharide interactions, developing different structuring techniques, incorporating

plant protein-generated flavors, and improving plant protein nutritional value. An area that needs future attention is

the potential impact that different forms of fractionation and improved functionality may have on its nutritional

quality. Finally, although the focus has been on plant proteins, it is vital to note that we usually eat whole foods and

not individual ingredients; hence, other components that make up future foods will also be needed to be

considered.
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