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Non-ionising ultraviolet radiation (UVR) and ionising radiation differ in their interactions with biomolecules, resulting
in varied consequences. Here describing the underlying molecular interactions of radiation in the context of

biological systems and their outcomes from exposure.
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| 1. Introduction

Radiation exists in two main forms: Electromagnetic (EM) radiation in the form of alternating electric and magnetic
waves that propagate energy, and particle radiation consisting of accelerated particles such as electrons and
protons. EM radiation can be broadly categorised as non-ionising and ionising. Both types may be encountered
clinically or environmentally, with exposure having potentially positive or negative effects on tissues and organisms
(Table 1). In the case of non-ionising radiation, exposure of skin to ultraviolet radiation (UVR), for example, may be
beneficial, as a consequence of vitamin D production W, or detrimental, due photoageing & and/or
photocarcinogenesis . UVR is considered non-ionising as it is, in general, not sufficiently energetic to remove
electrons from biomolecules. In contrast, energetic, ionising electromagnetic radiation (X-rays and gamma rays)
can remove electrons. The undoubted importance of controlled exposure to ionising EM radiation in medical
diagnostic imaging 4! and radiotherapy 2l must be balanced against side effects such as secondary cancers or
tissue fibrosis &, Other forms of radiation, which rely on charged particles (e.g., a, B, protons), can also interact
with biological systems and are clinically important (such as in proton therapy and in cosmic radiation exposure for
space exploration), but being non-electromagnetic, they lie outside the scope of this review. The reader is referred

to an excellent review by Helm et al. (2.

Table 1. Human exposure to ionising and non-ionising electromagnetic radiation can come from the environment or
from clinical interventions. Exposure to both types of radiation can have clear clinical benefits but may also result in

detrimental biological effects.

Environmental - Biological
Type Exposure Clinical Exposure Consequence
lonisin X-rays/Gamma  Cosmic radiation 19, Diagnostic imaging 12, Fibrosis (14,
1sing rays Radon gas [ Radiotherapy 12! Carcinogenesis [£2!
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review considers the consequences and causative mechanisms that drive electromagnetic radiation damage in
biological tissues and in the extracellular matrix (ECM) in particular. Two clinical models of interest are discussed:

skin exposed to UVR in sunlight and breast tissues exposed to diagnostic and therapeutic X-rays.

Electromagnetic Radiation

UVR and X-rays/Gamma rays, both being part of the EM radiation spectrum (Figure 1), differ only in wavelength,
frequency and energy. When a molecule absorbs EM radiation, it undergoes one of three possible transitions:

electronic, vibrational, or rotational B, In general, electronic transitions require the largest amount of energy,

followed by vibrational then rotational 321,

Increasing energy

lonizing radiation (1) Non-ionizing radiation
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Figure 1. UVR, X-rays and gamma rays all lie in the electromagnetic spectrum. UVR (UV-A and UV-B) lie at a
slightly higher energy range compared to visible light and are generally considered non-ionising. In contrast, X-rays

and gamma rays have much higher energy than UVR and are considered ionising radiation.

lonising radiation is often more energetic than non-ionising radiation and, as a result, is more likely to induce

electronic transitions of atoms and molecules. In electronic excitation, an electron absorbing the radiation transits
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into a higher electronic state, becoming less bounded to the nucleus and therefore more reactive 3. If the
radiation has sufficient energy, the electron can escape the coulomb attraction of the nucleus, and the molecule is
ionised. In contrast, molecules undergoing rotational or vibrational transitions (generally caused by non-ionising
UVR exposure) experience minimal changes in the stability of the electron-nucleus attraction, resulting in negligible
chemical effects. Therefore, exposure to ionising and non-ionising radiation results in significantly distinct biological

molecular effects.

| 2. Non-lonising Radiation (UVR)

UVR is conventionally designated as three categories of increasing energy, UVA (315 —400 nm), UVB (280-315
nm), and UVC (10-280 nm) 24, UVA and UVB are of particular biological interest as they comprise the UVR in
sunlight at the Earth’s surface (UV-A: 95%, UV-B: 5%) 351, In contrast, UVC is absorbed efficiently in the

atmosphere by ozone and oxygen and thus plays no role in environmental UVR damage [BIE7],

2.1. Absorption of Non-lonising Radiation (UVR)

Molecules or regions of molecules that absorb UVR are referred to as UV chromophores. Biological systems are
rich in UV chromophores, including DNA and some amino acid residues (28, In DNA, the nucleotides thymine and
cytosine absorb UVB to become electronically excited BJ49 |n proteins, the amino acid residues tyrosine (Tyr),
tryptophan (Trp) and cystine (double-bonded cysteine) absorb UVR from sunlight 2142 with an absorbance peak
at 280 nm for Tyr and Trp and lower for cystine 43144l For Tyr and Trp, their benzene ring structure facilitates an
electronic transition from the ground state to the singlet excitation state that requires photons in the UVB region
(180-270 nm) (43146 The excited chromophores can then transfer their energy or donate an electron to O,
forming several reactive oxygen species (ROS) 18471481 The excess energy can cleave intermolecular bonds,

such as disulphide bonds, or facilitate the formation of pyrimidine dimers in DNA 4250

UVR damage in biological organisms is largely mediated indirectly via the photodynamic production of unstable
ROS B, UVR exposure generates ROS via the reaction between the excited UV chromophores and molecular
oxygen (O,) @ (Figure 2). In brief, the excited UV chromophore reacts with O, to produce, through electron
transfer, either a superoxide anion radical (O,”) or singlet oxygen (*O,) through energy transfer. Superoxide
dismutases, which are present in the cell 22 and the ECM 58], convert O, into hydrogen peroxide (H,0,). In the
presence of Fe(ll), H,O, undergoes the Fenton reaction to generate hydroxyl radicals (HO-) &34l The cellular
effects of both 10, and HO- are well studied 44541 |ntracellular ROS have been shown to react with and cause
damage to both proteins and DNA (22581,

https://encyclopedia.pub/entry/16203 3/16



Biological Effects of Non-lonising UVR and lonising Radiation | Encyclopedia.pub

(@) Ultraviolet radiation () lomising radiation

Tyr, Trp (LY chromophores)

Excitation

Dre-excitation o

7N

HA o

H0
/ "‘\-..‘_

H,0*

0, 0, He+ *0H H+O(D) ‘OH+HO"
b 4 Proton transfer
Superoxide Singlet 3 3] 4+ *OH
anion Oy e e Lay a
1 Electron
Superonide hydration H,O
dismutase
ismul 191.HH0 Fc{.!.l-l;;mm s H.+ OH
gLy ——————i
Hydroyl
l raddical k I
0OH, H.O,, 'Oy | €y H®, "OHL H, HO He, OHF, Og, HOp I

Figure 2. UVR and ionising radiation indirectly damage biological molecules by ROS production. (a) UVR produces
ROS through UV chromophores that absorb UVR and undergo excitation. The excited chromophores react with
oxygen molecules to form singlet oxygen and the superoxide anion. The superoxide anion is converted to
hydrogen peroxide by superoxide dismutase before undergoing the Fenton reaction in the presence of Fe (ll) to
form the hydroxyl radical. (b) lonising radiation produces a range of ROS and, more crucially, the hydroxyl radical
through water radiolysis. This results in a larger concentration of hydroxyl radicals produced during ionising
radiation irradiation compared to UVR due to the abundance of water molecules. Information from Figure (b) was

sourced from Meesungnoen J. et al. 7,

2.2. Biological Consequences of UVR Exposure

Intracellularly, UV-B photons can be absorbed directly by the DNA nucleotides thymine and cytosine to form
cyclobutane pyrimidine dimers (CPDs) B9 and 6-4 photoproducts (6-4PP) 39, These photoproducts can further
absorb UV-A to form Dewar valence isomers 8. CPDs, 6-4PP, and Dewar valence isomers are known as
photolesions which disrupt the base pairing of DNA, preventing DNA transcription and replication 1€ Photo-
dynamically produced ROS may cleave the DNA sugar backbone causing single-stranded breaks (SSB) 52 or
oxidise guanine nucleotides to produce another photolesion, 8-oxoguanine, which can cause mismatched pairing
between the DNA bases 48],

The ROS, 10, and HO- produced by UVR are strong oxidising agents that also target amino acids vulnerable to
oxidation, including tryptophan 89, tyrosine 1, histidine 82, cystine 3], cysteine 64l methionine 83, arginine 68
and glycine 7. For a more comprehensive summary of photo-oxidation of amino acids, the reader is directed to
the review by Pattisson et al. 42, Oxidation-associated changes in protein structure may, in turn, affect function &I
[68I69] YVR exposure can also break or form intermolecular bonds in proteins. In particular, di-sulphide bonded

cystine can be reduced to cysteine 58, These amino acid level changes can affect protein function, with high and
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low UVR doses decreasing and increasing the thermal stability of collagen, respectively 72 yVvR can also
disrupt the function and structure of lipids via lipid peroxidation 3l resulting in compromised cell membranes.
Extracellularly, ROS may cause damage to abundant ECM proteins, such as collagen and elastin 473 and to
UVR-chromophore-rich proteins, such as fibrillin microfibrils and fibronectin Z8. The differential impacts of UVR

exposure on the matrisome (the extracellular proteome) are discussed in detail in Section 4 and Section 5 of this

review.

2.3. Repair and Prevention of UVR Damage

In response to the damage caused by UVR and/or photodynamically produced ROS, cells can initiate repair
mechanisms, including nucleotide excision, to remove photolesions in the DNA Zl. Enzymes in the cell can repair
reversibly oxidised proteins, such as cystine, which can be reduced back to cysteine by the thioredoxin reductase
system 28 or may break down irreversibly oxidised proteins, typically products of hydroxylation and carbonylation
processes 2B |n addition, ROS scavengers, such as superoxide dismutases, help restore the ROS balance in
the intracellular and extracellular spaces by converting the superoxide anion to hydrogen peroxide 23181l which is
then converted to water and oxygen by catalase and glutathione peroxidase 3 to prevent the formation of hydroxyl
radicals 24821 \We have recently proposed that the biological location of some UVR-chromophore-rich proteins
(including B and y lens crystallins, late cornified envelope proteins in the stratum corneum and elastic fibre-
associated proteins in the papillary dermis) may mean that these components act as sacrificial, and hence

protective, endogenous antioxidants [Z8],

| 3. lonising Radiation (X-rays/Gamma Rays)

In the EM spectrum, ionising radiation is comprised of X-rays (0.01 nm < A (wavelength) < 10 nm) and gamma rays
(A <0.001 nm) (Figure 1). Naturally occurring radon gases and cosmic radiation provide a background of ionising
radiation of, on average, 2.4 mSv a year [38. On the other hand, man-made sources of ionising radiation, such as
mammography, would commonly only expose the patient to a dose of 0.36 mSv per screening 8413 Another key

source of man-made ionising radiation that is of particular interest is radiotherapy.

The efficacy of radiotherapy lies in the ability of ionising radiation to penetrate biological tissues, allowing non-
invasive targeting and killing of aberrant cells by causing irreparable DNA damage. Historically, radiotherapy
utilised naturally occurring sources such as Co-60, which emits 1.2 MeV gamma rays. Modern external beam
radiotherapy treatment regimens use linear accelerators (linacs) to accelerate electrons towards a metal target to
produce ionising radiation 8 with exposures up to doses of 50 Gy for breast cancer radiotherapy patients 87,
Other forms of radiotherapy include Brachytherapy, where a radioactive source is placed within the patient near the
tumour (commonly prostate cancer) site 8. Inadvertent exposure of healthy tissues along the irradiation path can
lead to detrimental side effects, including radiation fibrosis ] and secondary cancers B2, While there are newer
radiotherapy machines utilising proton or heavy ion beams to reduce exposures to healthy tissue by exploiting the

Bragg peak (29 see Appendix A, these treatment options are less widely available and are often reserved for
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paediatric patients B2, X-ray/gamma ray radiotherapy remains the foremost therapeutic option, and hence, the

impact of these radiation exposures on healthy tissues is a key biological and medical issue.

3.1. Absorption of lonising Radiation (X-rays/Gamma Rays)

In contrast to UVR, photons of ionising radiation are energetic enough to ionise most molecules and atoms [22],
potentially leading to the disruption of intermolecular bonds 23, An abundance of water molecules in biological
systems results in a large percentage of ionising radiation being absorbed by water in a process called water
radiolysis 24 producing multiple ROS species. Water radiolysis induces the formation of not only hydrogen
peroxide, superoxide anion and the hydroxyl radical 24 but also an abundance of highly reactive hydroxyl radicals
931 (Figure 2).

3.2. Biological Consequences of Exposure to lonising Radiation

The exposure of DNA to ionising radiation may directly induce oxidation via deprotonation or electron removal,
again producing photolesions such as 8-oxoguanine 28, Hydroxyl radicals produced from water radiolysis can also
disrupt the bonds in the sugar backbone of DNA, resulting in SSBs 4227, As jonising radiation is highly energetic,
electrons ejected from radical formation could potentially cause further radiolysis of nearby water molecules,
resulting in a high density of hydroxyl radicals 2228 increasing the probability of SSB occurring close enough to
each other (within 10 base pairs) to promote the formation of double-stranded breaks (DSBs) 28129 DSBs are
potentially highly cytotoxic due to the risk of failed repair, such as in non-homologous end joining (NHEJ) or
homologous recombination, resulting in gene mutations 10912011 " clastogenic effects 192, teratogenesis 193] and

carcinogenesis 29,

lonising radiation-induced water radiolysis can cause significant ROS-mediated damage to proteins through the
disruption of peptide bonds, thereby altering their structure and function BZ[2041105] Thijs |eads to similar outcomes
to those already described in Section 2 including both protein oxidation 298! and lipid peroxidation 297, The direct
impact of ionising radiation on proteins can be observed during X-ray diffraction studies of protein crystals, where
cryogenic temperatures reduce the effects of radicals produced by the solvent [1%8], These studies demonstrate that
di-sulphide bonds and carboxyl groups are most susceptible to localised radiation damage 1031110 However, this
damage may not be evenly distributed throughout the protein 11 For example, Weik et al. (2000) have shown
that the specific disulphide bond between Cys-254 and Cys-265 residues for Torpedo californica
acetylcholinesterase, as well as the disulphide bond between Cys-6 and Cys-127 for hen egg white lysozyme, are
most susceptible to radiation damage. Radiation damage may also localise at active sites in proteins [1101[112][113]
such as for bacteriorhodopsin 1141 DNA photolyase 115 malate dehydrogenases 118 and carbonic anhydrase
(1171 This damage localisation has been hypothesised to be mediated either by the presence of metal ions, which
have high proton numbers and hence more electrons for photo-absorption to propagate subsequent ionisation

events 228l or by the relative accessibility of exposed active sites to ROS [110, Key extracellular protein targets of

ionising radiation are discussed in Section 4 and Section 5.
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3.3. Repair and Prevention of lonising Radiation Damage

As both ionising and non-ionising radiation produce ROS, the prevention and repair of damage are largely
mediated by the same mechanisms (see Section 2). However, to repair DNA damage specific to ionising radiation,
cells utilise base excision repair (BER) for oxidised nucleotides, such as 8-oxoguanine 1191120 \hijle NHEJ and
homologous recombination repair (HRR) is activated to remove DSBs [121[122][123]
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