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Artificial Intelligence (AI) researches and builds intelligent software and machines, provides a particular solution to a

particular defined complex problem. To carry out these tasks, it uses models and algorithms such as genetic algorithms,

particle swarm optimization, artificial neural networks (ANNs), and hybrid models (two or more of the above). ANNs are

flexible to accommodate non-linear and non-physical data; however, they require large multidimensional data set to

reduce the risk of extrapolation. ANNs are widely used in different branches of science for their learning ability and

adaptability to various settings.
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An ANN is a ML algorithm based on the concept of a human neuron . It is a biologically inspired computational model,

consisting of processing elements (neurons) and connections between them with coefficients (weights) attached to the

connections . ANNs are inspired by the brain structure and for this reason it is important to define the main components

under which a neuron, dendrites, cell body, and axon works. Dendrites are a network that carries electrical signals to the

cell body. The cell body adds and collects the signals. The axon carries the signal from the cell body to other neurons

using a long fiber. When the axon of a cell comes in to contact with a dendrite of another cell it is known as a synapse.

Therefore, the functions of neuronal networks are established through the arrangement of neurons and individual synaptic

forces . Figure 1 presents a general schematic of a biological neuron with each element that makes it up.

Figure 1. Structure of a biological neuron.

Neural structures develop through learning; however, they constantly change, strengthening or weakening the synaptic

junctions. Although ANNs are inspired by the brain, they are not that complex. However, the greatest similarities are

primarily that both networks are interconnected and the functions of the networks are determined by the connections

between neurons .

Neurons receive inputs such as impulses. The peak rate generated over time and the average peak generation rate in

several runs, are some measures used to describe neuron activity. In ANNs, a neuron is identified by the speed at which it

generates these peaks. A neuron connects to other neurons in the previous layer through adaptive synaptic weights.

Knowledge is generally stored as a set of connection weights. When these connection weights are modified in an orderly

manner and with a suitable learning method, a training process is carried out. The learning method consists of presenting

the input to the network and the desired output, adjusting the weights so that the network can produce the desired output.

After training the weights will have relevant information, whereas before training it is redundant and meaningless .

Figure 2 presents the simple neuron structure. The processing of the information in a neuron begins with the inputs X ,

they are weighted and added up before going through some activation function to generate its output, this process is

represented as ξ = ΣX ·W . For each of the outgoing connections, this activation value is multiplied by the specific weight

W  and transferred to the next node. If it considers a linear activation, the output would be given by y=α(wx+b) .
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Figure 2. The basic scheme of a neuron.

The Activation Function of an Artificial Neural Network

The activation function is a function that receives an input signal and produces an output signal after the input exceeds a

certain threshold. That is, neurons receive signals and generate other signals . The neuron start is only performed when

the sum of the total inputs is greater than the neuron threshold limit, then the output will be transmitted to another neuron

or environment. This threshold limit determines whether the neuron is activated or not, the most common activation or

transfer functions are the linear, binary step, piecewise linear, sigmoid, Gaussian and hyperbolic tangent functions .

Table 1 shows the activation functions commonly used in NNs. The behavior of neurons is defined by these functions. If it

transfers a function that is linear and the network is multi-layered, it can be represented as a single-layer network, since it

is product of weight matrices of each layer and will only produce positive numbers over the entire range of real numbers.

On the other hand, non-linear transfer functions (sigmoid function) between layers allow multiple layers to provide new

capabilities, adjusting the weights to obtain a minimum error in each set of connections between layers . Linear

functions are generally used in the input and output layers, while non-linear activation functions can be used for the

hidden and output layers .

Table 1. Activation functions for layers in artificial neural networks.
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▪Feedforward neural networks (FFNNs);

▪Recurrent neural networks (in discrete time) or differential (in continuous time);

The most used non-linear activation functions are sigmoid and hyperbolic tangents. Hyperbolic and sigmoid tangents are

mainly used because they are differentiable and make them compatible with the back-propagation algorithm. Both

activation functions have an “S” curve, while their output range is different . The sigmoid function is the most used

activation function in ANNs. This function varies from 0 to +1, although the activation function sometimes seeks to

oscillate between −1 and +1, in which case the activation function assumes an antisymmetric form with respect to the

origin, defining it as the hyperbolic tangent function .

Direct implementation of sigmoid and hyperbolic tangent functions in hardware is impractical due to its exponential nature.

There are several different approaches to the hardware approximation of activation functions, such as the piecewise linear

approximation. Linear part approximations are slow, but they are the most common way of implementing activation

functions . In addition, this uses a series of linear segments to approximate the trigger function. The number and

location of these segments are chosen so that errors and processing time are minimized .

The Gaussian activation function can be used when finer control over the activation range is needed . Furthermore, it

can uniformly perform continuous function approximations of various variables .

Types of Artificial Neural Network

The ANNs are classified according to different criteria, we can establish that there are two types :

Feedforward Neural Networks

The neuron is the basic component of

NNs. Neurons are connected to each

other through synaptic weight . Considering a neural network with three layers such as in Figure 3: an input layer, a

hidden layer and an output layer the intermediate layer is considered self-organized Kohonen map, which consists of two
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layers of processing units (input and output), depending on the complexity of the network (there may be several hidden

layers in each network) . In FFNNs, information progresses, from the input nodes to the hidden nodes and from the

hidden nodes to the output nodes. When an input pattern is fed into the network, the units in the output layer compete with

each other, and the winning output unit is the one whose input connection weights are closest to the input pattern, the

number of neurons in the input and output layers is the same as the number of inputs and outputs of the problem . The

learning method can be divided into two stages, the first stage is to determine the neuron of the hidden layer whose

weight vector is the first input vector and the second refers to the training process. Initially, the Euclidean distance

between the input and the weight vector of the first neuron will be calculated. If the distance is greater than a

predetermined distance threshold value, a new hidden-layer neuron is created by assigning the input as the weight vector.

Otherwise, the input pattern belongs to this neuron. During training, each pattern presented to the network selects the

closest neuron on a Euclidean distance measure, modifying the winner’s weight vector, and topological neighbors draws

them in the direction of the input, the weights leaving the winning neuron and its neighbors are adjusted by the gradient

descent method . Forward NNs fall into two categories based on the number of layers, either single layer or multiple

layers .

Figure 3. Feedforward neural network structure.

Back-propagation (BP) is a type of ANN training, used to implement supervised learning, tasks for which a representative

number of sample inputs and correct outputs are known. BP is derived from the difference in desired and predicted,

output; this is calculated and propagated backward . First, network weights to a small random weight are initialized, the

vector set of input data to the network are presented, the input propagated to generate the output, which is called the

input advance phase, and the error comparing the estimated net output with the desired output calculated . The weight

will be corrected from the output to the input layer that is, in the backward direction in which the signals propagate when

objects are introduced into the network. This is repeated until the error no longer improves .

Recurrent Neural Networks

In recurrent neural networks (RNNs) the information goes back and forth as can be seen in Figure 4a, for this reason, they

are also called feedback networks. In these networks, the connections between nodes form a directed cycle, where at

least one path leads back to the initial neuron. In this type of network there are different types of structure :
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▪Hopfield network: each neuron is completely symmetrically connected with all other neurons in the network. If the

connections are trained using Hebbian learning, then the Hopfield network can function as a solid memory and resistant to

the alteration of the connection. Hebbian learning involves synapses between neurons and their strengthening when

neurons on both sides of the synapse (input and output) have highly correlated outputs  as shown in Figure 4b. There

is a guarantee in terms of convergence for this network .

▪Elman network: this is a horizontal network where a set of “context” neurons is added. In Figure 4c the context units are

connected to the hidden network layer fixed with a weight. The subsequent fixed connections result in the context units

always keeping a copy of the previous values of the hidden units, maintaining a state, which allows sequence prediction

tasks .

▪Jordan network: these are very similar to Elman’s networks. However, context units feed on the output layer instead of

the hidden layer.

Figure 4. Recurrent neural networks structure: (a) Simple structure of a recurrent network, (b) Hopfield network structure,

(c) Elman network structure.

RNN is distinguished from a FFNN by the presence of at least one feedback connection. FFNNs do not have the intrinsic

ability to process temporary information. There are two important considerations about why recurrent networks are viable

tools for modeling: inference and prediction in noisy environments. In a typical recurrent network architecture, the

activation functions of the hidden unit are fed back each time step to provide additional input. That is, the recurrent

networks are built in such a way that the outputs of some neurons feed back to the same neurons or to the neurons in the

previous layers . Feedback from hidden units allows filtered data from the previous period to be used as additional

input in the current period. This causes the network to work not only with the new data, but also with the past history of all

entries, as well as their leaked equivalents. This additional filtered input history information acts as an additional guide to

assess the current noisy input and its signal component. By contrast, filtered history never enters a FFNN. This is where

recurring networks differ from a FFNN. Second, since recurrent networks have the ability to maintain the past history of

filtered entries as additional information in memory, a recurrent network has the ability to filter noise even when the noise

distribution can vary over time. In a FFNN a completely new training must be carried out with a new data set containing

the new type of noise structure .

Learning of Artificial Neural Networks

Learning is an essential part of NNs; this process defines the input-output relationship by looking for the most accurate

prediction calculation. The learning process can be classified into two categories: supervised and unsupervised.

Supervised learning knows the expected results and uses known or labeled data, while in unsupervised learning it is not

necessary to have known data, and the learning is done through the discovery of internal structures and data

representation .
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Supervised learning consists of minimizing a cost function that accumulates the errors between the actual outputs of the

system and the desired outputs, for the given inputs. To minimize this cost function, several methods are used, and the

gradient descent as the error BP algorithm is the most used for its acceptable results in one layer and multilayer networks

.

In unsupervised learning, it is based only on input data and the update of the weights is carried out internally in the

network, the algorithms are designed for the self-organization of the ANNs and can be derived by Hebbian law, or the use

of algorithms such as algebraic reconstruction technique .

The exposed be learning techniques have allowed the development of advanced algorithms such as SOM (self-organizing

maps) and SOTA (self-organizing tree algorithm), which are times series clustering algorithms based on unsupervised

NNs . SOM is a known data analysis tool for tasks like data visualization and clustering. One disadvantages of this tool

is that the user must select the map size. This may lead to many experiments with different sized maps, trying to obtain

the optimal result. Training and using these large maps may be quite slow . While the SOTA permits classification in the

initial levels of groups of patterns that are more separated from other and to classify patterns in final layers in a more

accurate way .

These techniques open up the possibility of not only learning connection weights from examples, but also learning a

neural network structure from examples. This is thanks to the fact that a neural network can be built automatically from the

training data by SOTA methods .
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