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Fertility preservation is an emerging discipline, which is of substantial clinical value in the care of young patients with

cancer. Chemotherapy and radiation may induce ovarian damage in prepubertal girls and young women. Although many

studies have explored the mechanisms implicated in ovarian toxicity during cancer treatment, its molecular

pathophysiology is not fully understood.
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1. Introduction

It is estimated that more than 9.2 million women were newly diagnosed with cancer worldwide in 2020 . Furthermore,

there were 89,500 new cancer cases and 9270 cancer deaths in adolescents and young adults (AYAs) aged 15–39 years

in the United States . The survival of cancer patients has significantly improved due to recent advances in cancer

treatment . However, oncologic therapies can affect ovarian function in young women . The exhaustion of

ovarian follicle reservoirs may lead to not only loss of fertility but also premature ovarian failure, which could result in poor

quality of life in young female cancer survivors . Recently, fertility preservation (FP) has become an emerging

discipline with significant clinical value in the care of AYA cancer patients , and many organizations have provided

recommendations for FP during cancer treatment .

Chemotherapy has toxic effects on the ovaries and causes the loss of the primordial follicle (PF) reserve . Endocrine

therapy can increase the risk of infertility in patients with hormone receptor-positive malignancies . In the case of

abdominal or pelvic cancers, treatments including radiotherapy or surgery may alter future fertility because of direct

gonadal damage . Many studies have explored the mechanisms implicated in ovarian toxicity during cancer

treatment; however, the underlying molecular pathophysiology is not fully understood .

This article will review the mechanisms of cancer therapy-induced ovarian dysfunction and explore the future perspectives

for preventing infertility in AYAs with cancer.

2. Cancer Treatment-Induced Ovarian Damage

Ionizing radiation to the abdominopelvic region has deleterious effects on gonadal function at all ages . For example,

cervical and rectal cancers usually require pelvic irradiation, and craniospinal radiotherapy is performed in cases of central

nervous system malignancy. In some patients with Hodgkin’s disease, pelvic lymph nodes require irradiation, and total

body irradiation may be necessary prior to bone marrow transplantation.

The resulting damage depends on the dose and field of irradiation and the age of the patient. Women who received

radiation treatment outside the pelvis had a low risk of ovarian dysfunction . In the prepubertal period, the ovaries are

relatively resistant to gonadotoxicity .

Dividing GCs appear to be the main target of radiation-related gonadotoxicity. Prominent cell death has been observed

within a few hours of irradiation . Oocytes are highly radiosensitive because the estimated dose at which half of the

follicles are lost in humans (LD50) is <2 Gy . A single oocyte is highly radiosensitive to a D 0 of 0.12 Gy (reciprocal of

the slope of the exponential region of a survival curve). This sensitivity is affected by age; women younger than 40 years

of age are less sensitive, requiring 20 Gy to experience permanent damage, whereas older women require only 6 Gy .

The radiosensitivity of oocytes differs according to their growth phase. A quiescent PF is usually more radio-resistant than

a large maturing follicle . Radiotherapy-induced ovarian damage also occurs in the stroma with vascular damage,

resulting in tissue atrophy and fibrosis . In general, a combination of multiple factors determines the extent of

radiosensitivity, including age, the use of combination therapy, and radiation dose .
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The biological effect of radiation treatment is also affected by linear energy transfer (LET) in tumors . LET radiation

induces anticancer effects by depositing physical energy or radiation into malignant cells, which results in stable free

radicals and induces cellular damage because of the direct ionization of the cellular macromolecules, such as DNA, RNA,

lipids, and proteins . High LET radiation results in gonadal DNA damage that causes multiple lesions within the helical

turns of the DNA, which is referred to as “direct” damage ( Figure 1 ).

Figure 1. Biological effect of radiation via linear energy transfer (LET) in tumors. High LET radiation results in “direct”

gonadal DNA damage that incorporates multiple lesions within the helical turns of the DNA molecule. Conversely, the

increase in reactive oxygen species (ROS) induces rapid primordial follicle loss via “indirect” damage.

3. Detection of Ovarian Damage

However, the level of AMH does not always correlate with the quality of oocytes because it only reflects the quantity of

oocytes . Additionally, AMH concentration could be altered by the handling of the blood sample or the assay method

used to measure AMH levels .

After chemotherapy, FSH levels usually increase due to follicular depletion. However, basal FSH is not always a valuable

marker of ovarian reserve in patients who have undergone cancer treatment. For example, if women have regular

menstrual cycles, FSH levels may show normal values, even though the ovarian reserve decreases after treatment .

In such instances, that is, when the FSH levels are within the normal range, estradiol concentration in the early follicular

phase may provide additional information .

Inhibin-B is secreted by the GCs of antral follicles and it regulates FSH levels via a negative feedback reaction. Inhibin-B

is usually exhibited at low levels in women with a decreased ovarian reserve . However, it is not a reliable marker of the

ovarian reserve because its levels vary widely during menstrual cycles .

During the early follicular phase, transvaginal ultrasound can be used to count antral follicles measuring 2–10 mm in both

ovaries . A low AFC may be related to a diminished response to ovarian stimulation. Furthermore, a few studies have

demonstrated that a low AFC could be a marker for the risk of developing amenorrhea after cancer treatment .

However, the estimation of ovarian volume using ultrasound provides limited clinical utility as an ovarian reserve marker.

4. Prevention and Management of Ovarian Damage

As oocyte freezing involves the removal of cumulus cells before cryopreservation, it can induce changes in the zona

pellucida, which may affect the fertilization rates of conventional insemination. Therefore, ASRM recommends

intracytoplasmic sperm injection for frozen oocytes as the preferred procedure .

The combination of oocyte cryopreservation and ovarian tissue cryopreservation can enhance the results of the FP

procedure . However, the cryopreservation of ovarian tissue concomitant with oocyte retrieval is ineffective; thus, it is

not recommended after ovarian stimulation with human menopausal gonadotropin or recombinant FSH followed by

human chorionic gonadotropin .

Ovarian tissue cryopreservation is generally the only option for FP in children or AYAs with cancer who need immediate

treatment and do not have enough time for ovarian stimulation and other procedures. Using this technique, a large

number of oocytes, including PFs, can be preserved, and hormonal function of the ovary can be protected to improve the

quality of life of the young patients .

Oocyte cryopreservation is not suitable for patients with ovarian or hematologic malignancies because of the possible

contamination of the ovarian tissue with malignant cells, as shown in several studies . Nonetheless, ovarian tissue

cryopreservation may be considered after an initial dose of chemotherapy to reduce the risk of malignant cell
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contamination, despite possible partial ovarian damage .
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