

Herpes Zoster in Antiretroviral Therapy

Subjects: **Biology**

Contributor: Sriyani Padmalatha Konara Mudiyanselage

The incidence of herpes zoster (HZ) in patients infected with HIV is higher than that of the general population. However, the incidence of HZ in HIV patients receiving antiretroviral therapy (ART) remains unclear.

incidence

herpes zoster

HIV-infected patients

highly active antiretroviral therapy

meta-analysis

1. Introduction

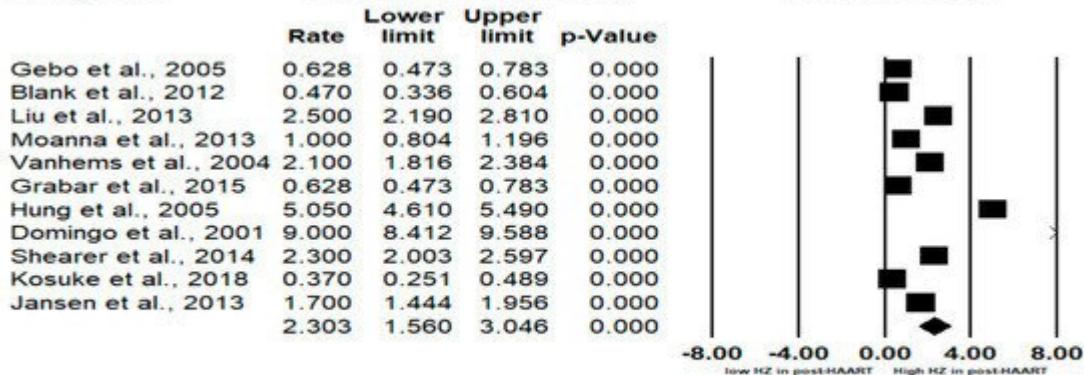
Herpes zoster (HZ), also known as shingles, is caused by the reactivation of varicella zoster virus (VZV), which remains latent in the sensory ganglia following varicella infection [1]. HZ is a human immunodeficiency virus (HIV)-associated opportunistic infection. HIV infected populations have a 3- to 20-fold higher risk of contracting HZ than HIV seronegative individuals [2][3][4][5][6]. A systematic review and meta-analysis of the HZ incidence in ART-naïve patients was 9.4%. During the first year of ART, the incidence was 2.3%, but this reduction was not statistically significant [7].

Even though the introduction of ART has improved the survival of those living with HIV, the incidence of HZ among HIV cohorts remains higher than that of the general population [4][8]. The incidence of HZ in the HIV cohort was 9.3–141 per 1000 patient years (PYs) [8][9][10]; but the incidence of HZ in the general population is only 3–5 per 1000 PYs [11]. The general population lifetime risk for HZ is between 23.8% and 30% and affects approximately one in four people in Europe; however, for those aged >85 years, the risk increases to one in two people [12].

ART was previously associated with reduced risk of herpes zoster and other opportunistic infections and could substantially improve the quality of life among HIV infected patients [7]. The long-term effects of ART on HZ incidence among HIV infected cohorts have been inconsistent across previous studies. A study in 2005 noted that the HZ incidence has not significantly decreased since the advent of ART [9]. Conversely, other prior studies found a reduction in the risk of HZ after the initiation of ART in North America, Europe, Taiwan and Africa [4][8][10][13][14][15][16][17]. Several studies have shown an increase in the HZ incidence during the first to fourth months following ART therapy, which suggests that HZ may be a feature of immune reconstitution inflammatory syndrome (IRIS) [9][18][19].

A better understanding of the risk factors for HZ for the HIV infected population may provide valuable information for health care professionals to identify adult patients at a heightened risk and could help formulate appropriate policies for vaccination strategies for the HIV-infected population [20]. Therefore, the objective of meta-analysis

aimed to systematically review studies estimating the incidence and risk factors for HZ in the post-ART era among people living with HIV (PLWH) and discuss implications based on the updated evidence.

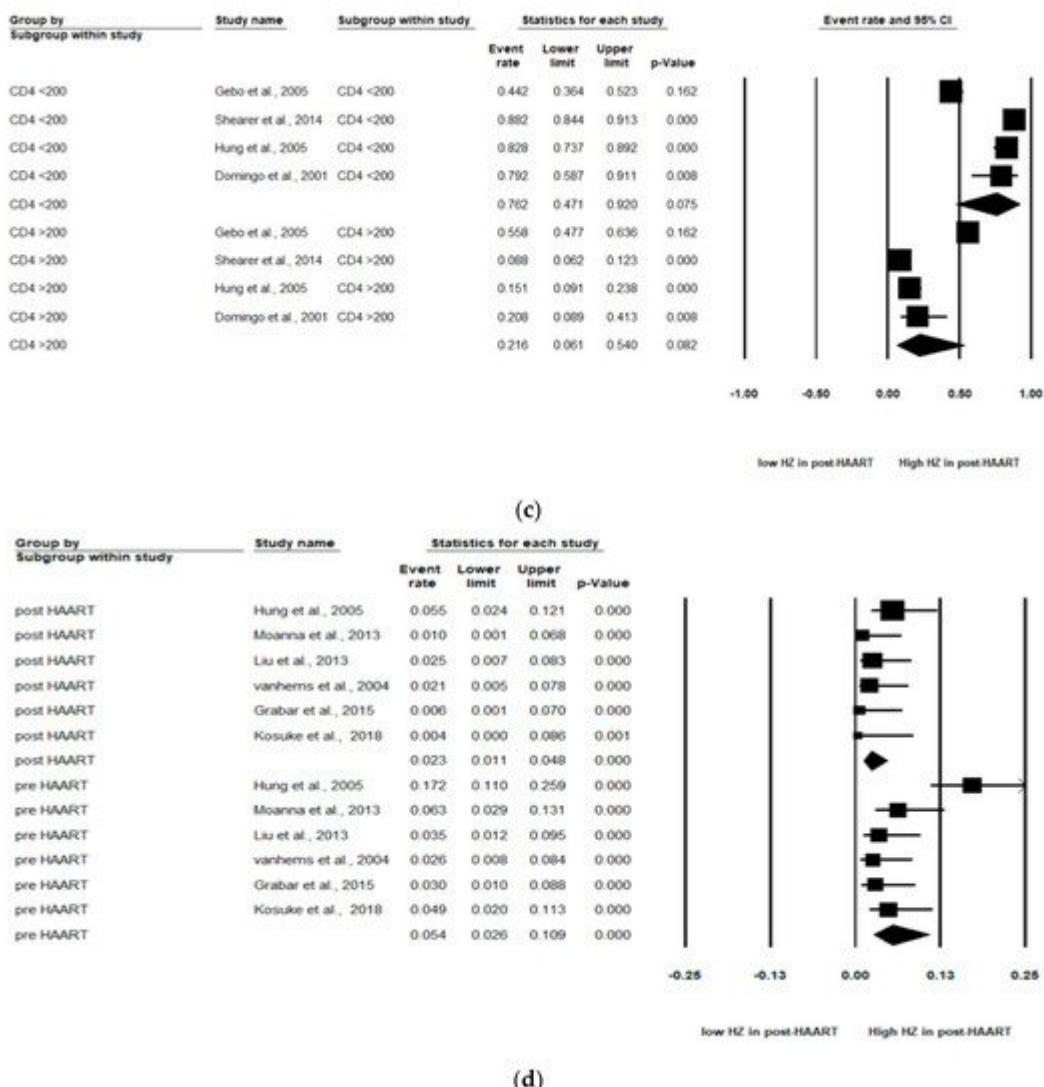

2. Results

2.1. Study Characteristics

During the period from 1 January 2000 to 28 February 2021, we identified 2111 records: 221 from PubMed, 1793 from Embase, 23 from Cochrane Library and 74 from CINAHL. After removing duplications and the initial screening, 45 articles were eligible for full-text review ([Figure 1](#)).

Eleven studies met the inclusion criteria for the meta-analysis. The 11 studies received a quality score of ≥ 8 , with nine studies receiving a score of > 10 out of 12 ([Table 1](#)). The 11 studies included 10 cohort studies and 1 clinical observational study. Overall, the study quality was acceptable. These 11 studies included 195,190 total HIV infected participants. The incidence was reported for populations in America (four studies), Europe (four studies), Asia (one study) and Africa (two studies).

The pooled incidence rate of HZ in the 11 studies was 2.30 (95% CI: 1.56–3.05) per 100 person years (PYs) ([Figure 2a](#)). Due to high heterogeneity, subgroup analyses were conducted and stratified by gender, income, AIDS history, study observational years, HIV risk factors and CD4 cell count ([Table 2](#)). Among the 10 studies, patients with high income (pooled RR, 2.64; 95% CI, 1.62–3.65) had the pooled HZ incidence greater than those with low income (pooled RR, 1.33; 95% CI, −0.56–3.22). Among the 4 studies, patients without AIDS history (pooled RR, 0.60; 95% CI, 0.46–0.72) had the pooled HZ incidence greater than those who had AIDS history (pooled RR, 0.40; 95% CI, 0.28–0.54). Among the 4 studies, patients being heterosexual had the pooled HZ incidence (pooled RR, 0.41; 95% CI, 0.31–0.52) greater than IDUs and MSM. Of the 4 studies, patients with a CD4 count < 200 cells/mm³ (pooled RR, 0.78; 95% CI, 0.55–0.91) were at increased risk of HZ compared with those with a CD4 count > 200 cells/mm³ (pooled RR, 0.21; 95% CI, 0.06–0.51).


Study name**Statistics for each study****Rate and 95% CI**

(a)

Study name**Subgroup within study****Statistics for each study****Event rate and 95% CI**

		Event rate	Lower limit	Upper limit	Z-Value	p-Value
Gebo et al., 2005	Female	0.367	0.296	0.445	-3.300	0.001
Blank et al., 2012	Female	0.377	0.310	0.449	-3.292	0.001
Hung et al., 2005	Female	0.097	0.051	0.176	-6.368	0.000
Grabar et al., 2015	Female	0.280	0.270	0.290	-35.916	0.000
Domingo et al., 2001	Female	0.250	0.117	0.456	-2.331	0.020
Shearer et al., 2014	Female	0.047	0.595	0.696	5.341	0.000
		0.324	0.198	0.481	-2.183	0.029
Gebo et al., 2005	male	0.633	0.555	0.704	3.300	0.001
Blank et al., 2012	male	0.623	0.551	0.690	3.292	0.001
Hung et al., 2005	male	0.903	0.824	0.949	6.368	0.000
Grabar et al., 2015	male	0.720	0.710	0.730	-35.916	0.000
Domingo et al., 2001	male	0.750	0.544	0.883	2.331	0.020
Shearer et al., 2014	male	0.353	0.304	0.405	-5.341	0.000
		0.676	0.519	0.802	2.183	0.029

(b)

Figure 2. Meta-analyses of (a) HZ incidence of HIV-infected patients among ART-era therapy, (b) subgroup segmented by sex, (c) subgroup segmented by CD4 count level and (d) subgroup segmented by ART use. (Note: in the graph, the square represents the effect size of each study. The bigger the square, the more participants in the study. A horizontal line represents the 95% confidence intervals of the study result, with each end of the line representing the boundaries of the confidence interval. The diamond represents the combined effect. Pre-ART = not receiving ART. Post-ART = receiving ART).

Table 2. Subgroup analysis of HZ incidence in different categories.

Subgroup Category	No. of Studies	RR (95% Confidence Interval)	I^2 (%)	p Value
Overall HZ	11	2.30 (1.56–3.05)	99.3	0.001
Sex				
Male	6	0.68 (0.52–0.80)	97.5	0.001
Female	6	0.32 (0.20–0.48)	97.5	0.001

Subgroup Category	No. of Studies	RR (95% Confidence Interval)	I ² (%)	p Value
Income				
High income	8	2.64 (1.62–3.65)	99.5	0.001
Low income	2	1.33 (−0.56–3.22)	99.3	0.001
AIDS history				
Yes	4	0.40 (0.28–0.54)	98.3	0.001
No	4	0.60 (0.46–0.72)	98.3	0.001
Observation years				
>7 years	5	2.50 (1.29–3.71)	99.6	0.001
≤7 years	5	2.24 (1.09–3.40)	99.1	0.001
HIV risk factor				
Heterosexual	4	0.41 (0.31–0.52)	76.5	0.005
IDUs	4	0.35 (0.20–0.54)	88.7	0.001
MSM	4	0.32 (0.19–0.49)	90.2	0.001
CD4 count				
CD4 < 200	4	0.78 (0.55–0.91)	95.6	0.001
CD4 > 200	4	0.21 (0.06–0.51)	97.0	0.001
ART use				
Pre-ART	6	6.22 (3.59–8.85)	99.6	0.001
Post-ART	6	2.00 (1.04–2.95)	99.2	0.001

References

1. Hope-Simpson, R.E. The nature of herpes zoster: A long-term study and a new hypothesis. *Proc. R. Soc. Med.* 1965, 58, 9–20.

2.2. **Meta-Regression Analyses of Overall HZ Moderators**
 Performed several meta-regression analyses, by which samples were segmented by sex, CD4 count level and ART use.

2. Buchbinder, S.P.; Katz, M.H.; Hessol, N.A.; Liu, J.Y.; O’Malley, P.M.; Underwood, R.; Holmberg, S.D. Herpes zoster and human immunodeficiency virus infection. *J. Infect. Dis.* 1992, 166, 1153–1156.

2.3. **Subgroup Analyses by Sex**
 3. Glesby, M.J.; Hoover, D.R.; Tan, T.; Shi, Q.; Gao, W.; French, A.L.; Toby, M.; Mary, Y.; Jack, D.; Jenny, R.; et al. Herpes zoster in women with and at risk for HIV: Data from the Women’s Interagency HIV Study. *J. Acquir. Immune Defic. Syndr.* 2004, 37, 1604–1609.

48% (abre). La tasa de incidencia de herpes zoster en los individuos con VIH es de 10-15 veces mayor que en la población general (Figura 2). Meluzzi, V.; Ferret, S.; Lascaux, A.-S.; et al. Incidence of Herpes Zoster in HIV-

2.4. Subgroup Analyses by CD4 Count Level

As stated, two levels of CD4 count (CD4 count < 200 and CD4 count > 200 cells/mm 3) were analyzed in these studies. Of the four studies, patients with a CD4 count < 200 cells/mm 3 (pooled RR, 0.76; 95% CI, 0.47–0.92, $p < 0.001$) were at increased risk of HZ compared with patients with a CD4 count > 200 cells/mm 3 (pooled RR, 0.22; 95% CI, 0.06–0.54, $p < 0.001$). A significant effect was noted in that CD4 count < 200 cells/mm 3 among HIV-infected population that would increase the risk of HZ (Figure 2c).

3.5 Subgroup Segmented by ART Use

Incidence of opportunistic infections and the impact of antiretroviral therapy among HIV-infected adults in low- and middle-income countries: A systematic review and meta-analysis. *Clin. Infect. Dis. Off. Publ. Infect Dis. Soc. Am.* 2016, **62**, 1595–1603.

2.6. Meta-Regression Analysis

9. Gebo, A.K.; Kalyani, R.; Moore, R.D.; Polydefkis, M.J. The Incidence of, Risk Factors for, and Sequelae of Herpes Zoster among HIV Patients in the Highly Active Antiretroviral Therapy Era. *J AIDS*. 1 August; 44(1):169-174 and using Egger's test.

10. Moanna, A.; Rimland, D. Decreasing Incidence of Herpes Zoster in the Highly Active Antiretroviral Therapy Era. *Clin. Infect. Dis.* 2013, 57, 122–125.

11. Kawai, K.; Yawn, B.P. Risk Factors for Herpes Zoster: A Systematic Review and Meta-analysis. Mayo Clin. Proc. 2017, 92, 1806–1821.

12. Pinchinatti, S.; Cebrián-Cuénca, A.M.; Bricout, H.; Johnson, R.W. Similar herpes zoster incidence across Europe: Results from a systematic literature review. *BMC Infect. Dis.* 2013, 13, 170.

13. Hung, C.-C.; Hsiao, C.-F.; Wang, J.-L.; Chen, M.-Y.; Hsieh, S.-M.; Sheng, W.-H.; Chang, S.-C. Herpes zoster in HIV-1-infected patients in the era of highly active antiretroviral therapy: A prospective observational study. *Int. J. STD AIDS* 2005, **16**, 673–676.

14. Jansen, K.; Haastert, B.; Michalik, C.; Guignard, A.; Esser, S.; Dupke, S.; Plettenberg, A.; Skaletz-Rorowski, A.; Brockmeyer, N.H. Incidence and risk factors of herpes zoster among hiv-positive patients in the Belgian cohort (Belnet) for HIV/AIDS (Kempen), A cohort study analysis and the BMSI cohort (Dis 2013 in 189 372 us shown as a diamond).

15. Kawai, K.; Hawkins, C.A.; Hertzmark, E.; Francis, J.M.; Sando, D.; Muya, A.N.; Ulenga, N.; Fawzi, W.W. Impact of Antiretroviral Therapy on the Risk of Herpes Zoster among Human analysis was conducted to identify significant independent covariates as potential sources of heterogeneity to be

including in older patients. Version 1 of the revised WHO guidelines for the treatment of HIV/AIDS in Tanzania for ART in the pre-treatment era. *J Clin Virol* 2013; 58:396–435 (95% CI: 0.54–2.41), $p = 0.002$), CD4 count < 200 cells/ μ L (AOR: 11.59 (95% CI: 0.53–4.38), $p = 0.013$) and not receiving ART (AOR: 2.89 (95% CI: -0.44–2.56), $p = 0.16$) (Table 3).

16. Liu, C.; Wang, C.; Glesby, M.J.; D'Souza, G.; French, A.; Minkoff, H.; Maurer, T.; Karim, R.; Young, M. Effects of highly active antiretroviral therapy and its adherence on herpes zoster incidence: A longitudinal cohort study. *AIDS Res. Ther.* 2013, 10, 34.

	Variable	Coefficient	Standard Error	OR (95% CI)	p Value
	Sex				
	Female	Reference			
	Male	1.47	0.48	0.54–2.41	0.002 *
1	HIV risk factor				
	Heterosexual	Reference			
1	IDU	-0.77	0.51	-1.76–0.22	0.13
	MSM	0.19	0.48	-0.76–1.13	0.70
2	CD4 count				
	CD4 > 200	Reference			
	CD4 < 200	2.45	0.98	0.53–4.38	0.013 *
2	AIDS history				
	No	Reference			
	Yes	-0.57	0.42	-1.39–0.25	0.17
2	ART use				
	With ART	Reference			
	Absence of ART	1.06	0.77	-0.44–2.56	0.16

* $p < 0.05$.