Bacterial pathogens are serious causative agents of infectious disease. Such microorganisms are resistant to multiple antimicrobial agents, thereby compromising the therapeutic efficacy of treatment. Multidrug-resistant pathogens harbor antimicrobial efflux pumps, many transporters of which are members of the extensive major facilitator superfamily of proteins. These bacterial multidrug efflux pumps are good molecular targets for modulation and possible inhibition. This entry briefly discusses several current developments for drug efflux pump modulation.

Due to their widespread occurrence among cells from across all known living taxa and because of their ability to confer multiple antimicrobial resistance, bacterial multidrug efflux pumps from the major facilitator superfamily make suitable targets for resistance modulation. A variety of efflux pump modulators have been discovered, such as naturally-occurring bioactive agents, synthetic agents, and synergistic modulator combinations. Table 1 lists some examples of various modulators of antimicrobial efflux pumps belonging to the major facilitator superfamily, which are discussed in detail elsewhere.

<table>
<thead>
<tr>
<th>Efflux Pump Targeted</th>
<th>Modulators</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>EmrB from Escherichia coli</td>
<td>Phenylalanine arginyl β-naphthylamide (PAβN) and 1-(1-naphthyl methyl)-piperazine (NMP)</td>
<td>[8]</td>
</tr>
<tr>
<td>EmrD-3 from Vibrio cholerae</td>
<td>Garlic, allyl sulfide</td>
<td>[9]</td>
</tr>
<tr>
<td>LmrP from Lactococcus lactis</td>
<td>Verapamil and quinine</td>
<td>[10]</td>
</tr>
<tr>
<td></td>
<td>Nicardipine and vinblastine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetraphenyl phosphonium</td>
<td></td>
</tr>
<tr>
<td>QacA from Staphylococcus aureus</td>
<td>Hydantoin, silybin</td>
<td>[11][12]</td>
</tr>
<tr>
<td>MdfA from Escherichia coli</td>
<td>Reserpine</td>
<td>[13]</td>
</tr>
<tr>
<td>QacB from Staphylococcus aureus</td>
<td>Silybin</td>
<td>[11]</td>
</tr>
<tr>
<td>LmrS from Staphylococcus aureus</td>
<td>Cumin seed oil, cumin aldehyde, reserpine</td>
<td>[14]</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>3-aryl piperidines</td>
<td>[15]</td>
</tr>
<tr>
<td></td>
<td>Berberine</td>
<td>[16]</td>
</tr>
<tr>
<td></td>
<td>Reserpine</td>
<td>[17]</td>
</tr>
<tr>
<td></td>
<td>Omeprazole, lansoprazole</td>
<td>[18]</td>
</tr>
<tr>
<td></td>
<td>GG918, tariquidar (primary active transport inhibitors)</td>
<td>[19][20]</td>
</tr>
<tr>
<td></td>
<td>Verapamil, ciprofloxacin, ofloxacin</td>
<td>[21]</td>
</tr>
<tr>
<td></td>
<td>5,9′dimethyl-deca-2,4,8-trienoic acid, 9-formyl-5-methyl-deca-2,4,8-trienoic acid</td>
<td>[22]</td>
</tr>
<tr>
<td></td>
<td>Chlorpromazine, thioridazine, and prochlorperazine</td>
<td>[23][24][25]</td>
</tr>
<tr>
<td></td>
<td>Kaempferol rhamnoside</td>
<td>[26]</td>
</tr>
<tr>
<td></td>
<td>Chalone</td>
<td>[27]</td>
</tr>
<tr>
<td></td>
<td>COX-2 inhibitor analog, 3-(4-chlorophenyl)-1-(4-nitrophenyl)-1,4-dihydropyrazolo[4,3-c][1,2]benzothiazine 5,5-dioxide</td>
<td>[28]</td>
</tr>
<tr>
<td></td>
<td>Coumarin</td>
<td>[29]</td>
</tr>
<tr>
<td></td>
<td>Genistein (flavonoid compound)</td>
<td>[30]</td>
</tr>
<tr>
<td></td>
<td>Ginsenoside 20(S)-Rh2</td>
<td>[30]</td>
</tr>
<tr>
<td></td>
<td>Boronic acid molecules, 6-(3-phenylpropoxy) pyridine-3-boronic acid and 6-(4-phenylbutoxy) pyridine-3-boronic acid</td>
<td>[31]</td>
</tr>
</tbody>
</table>
Silybin

5′-methoxy-hydnocarpin, pheophorbide A, 5′-MHC, curcumin, kaempferol, silibinin, isoflavone, orizabins, capsaicin, tannic acid,

nerol, dimethyl octanol, estragole

Riparin B

Olaanolic acid, ulvaol

Brachydins: BR-A, BR-B

One of the earliest clear examples of modulation upon a major facilitator superfamily antimicrobial efflux pump was that of the energy uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) and the TetA(C) tetracycline efflux pump, demonstrating that the pump was a secondary active transporter. Since this groundbreaking study, CCCP has been used as a means of establishing the ion-driven process of energization for most newly discovered secondary active transport systems. Furthermore, CCCP has been shown to be effective, albeit in an indirect manner, as an inhibitor of antimicrobial efflux in a great variety of major facilitator superfamily transporters by collapsing the proton motive force. Along these lines, reserpine and piperine have served as general inhibitors for many efflux pumps, independent of the mode of energy, substrates, and superfamily membership.

A universal target for a multitude of efflux pump inhibitors is the NorA transporter from the critical pathogen S. aureus and is considered in further detail elsewhere. Similarly, the QacA efflux pump from S. aureus represents another well-studied target for modulation by a large number of inhibitors, which have been extensively reviewed. In our laboratory, we discovered that the non-toxic cumin spice extract and its bioactive agent cuminaldehyde inhibited resistance and efflux, respectively, which were mediated by the multidrug efflux pump LmrS from S. aureus. More recently, brachydin-based compounds extracted from extracts of Arrabidaea brachypoda were shown to inhibit both the growth of S. aureus and NorA drug efflux. As clinical infection by S. aureus is a critical public health concern and because the genome encodes over a dozen distinctive antimicrobial efflux pumps, this bacterium will continue to be a target of intensive study for resistance modulation.

We also evaluated the efficacy of the garlic extract and its bioactive agent allyl sulfide towards multidrug resistance conferred by the EmrD-3 multidrug efflux pump from the Vibrio cholerae pathogen. We found a direct effect upon antimicrobial transport across EmrD-3 by garlic extract at low concentrations but an indirect effect on resistance at higher garlic extract amounts, probably through modulation at the level of the respiratory chain. Correspondingly, we observed similar modulatory effects with cumin and drug transport through LmrS and with the energetics of the respiratory chain in S. aureus. We anticipate that similar direct effects on antimicrobial transport at low modulator concentrations and indirect effects at relatively higher modulator amounts will continue to be observed with other bacterial pathogens that harbor multidrug efflux pumps that constitute members of the major facilitator superfamily.

Previously known as CmlA and Cmr, and now as MdfA, the protein structure of this multidrug efflux pump from E. coli was determined at high resolution in which one of its substrates, chloramphenicol, plus two substrate analogs and putative efflux pump inhibitors n-dodecyl-N,N-dimethylamine-N-oxide and deoxycholate, were bound to MdfA. Interestingly, chloramphenicol makes contact with the conserved and negatively-charged residues Glu-26 and Asp-34, which are located in α-helix one of MdfA and are circled by conserved members of motif C, namely, Val-149, Ala-150,
Ala-153, and Pro-154, constituting the so-called domain interface between the two global bundles. In more recent studies, it was discovered that not only is the α-helical structure formed by the motif C kinked, as predicted, but the fifth helix also rotationally twists during substrate translocation across the membrane. Thus, because of its presence in efflux pumps of the major facilitator superfamily, it is anticipated that the domain interface component of the molecular hinge is a desirable target for the development of potent efflux pump inhibitors.

References

1. Sanath H Kumar; Guixin He; Prathusha Kakarla; Ugina Shrestha; K C Ranjana; Indrika Ranaweera; T Mark Willmon; Sharla R Barr; Alberto J Hernandez; Manuel Varela; et al. Bacterial Multidrug Efflux Pumps of the Major Facilitator Superfamily as Targets for Modulation. Infectious disorders drug targets 2016, 16, 28–43.

3. Manjushta Lekshmi; Parvalthi Ammini; Jones Adjei; Leslie M. Sanford; Ugina Shrestha; Sanath Kumar; Manuel Varela; Modulation of antimicrobial efflux pumps of the major facilitator superfamily in Staphylococcus aureus.. AIMS Microbiology 2018, 4, 1-18, 10.3934/microbiol.2018.1.1.

5. Rao M; Padyana S; Dipin Km; Sanath H Kumar; Nayak Bb; Varela Mf; Antimicrobial Compounds of Plant Origin as Efflux Pump Inhibitors: New Avenues for Controlling Multidrug Resistant Pathogens. Journal of Antimicrobial Agents 2018, 4, 1-6, 10.4172/2472-1212.1000159.

6. Ashima Kushwaha Bhardwaj; Priyabrata Mohanty; Bacterial efflux pumps involved in multidrug resistance and their inhibitors: rejuvenating the antimicrobial chemotherapy. Recent Patents on Anti-Infective Drug Discovery 2012, 7, 73-89, 10.2174/157489112799829710.

7. I. E. Cock; Matthew J. Cheesman; Aishwarya Ilanko; Baxter Blonk; Developing new antimicrobial therapies: Are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution?. Pharmacognosy Reviews 2017, 11, 57-72, 10.4103/pre.pre_21_17.

8. M.A. Ospina Barrero; P.A.G. Pietralonga; D.G.G. Schwarz; A. Silva Júnior; S.O. Paula; Maria Aparecida S. Moreira; Effect of the inhibitors phenylalanine arginyl β-naphthylamide (PAßN) and 1-(1-naphthylmethyl)-piperazine (NMP) on expression of genes in multidrug efflux systems of Escherichia coli isolates from bovine mastitis. Research in Veterinary Science 2014, 97, 176-181, 10.1016/j.rvsc.2014.05.013.

9. Merissa M. Bruns; Prathusha Kakarla; Jared T. Floyd; Mun Mun Mukherjee; Robert C. Ponce; John A. Garcia; Indrika Ranaweera; Leslie M. Sanford; Alberto J. Hernandez; T. Mark Willmon; et al.Grace L. TolsomonVarela Modulation of the multidrug efflux pump EmrD-3 from Vibrio cholerae by Allium sativum extract and the bioactive agent allyl sulfide plus synergistic enhancement of antimicrobial susceptibility by A. sativum extract. Archives of Microbiology 2017, 199, 1103-1112, 10.1007/s00203-017-1378-x.

11. Anna Dymek; Ana Armada; Jadwiga Handzlik; Miguel Viveiros; Gabriella Spengler; Joseph Molnár; Katarzyna Kiec-Kononowicz; Leonard Amarat; The activity of 16 new hydantoin compounds on the intrinsically and overexpressed efflux pump system of Staphylococcus aureus.. In Vivo 2012, 26, 223–229.

12. Shuang-Ying Wang; Zhong-Lin Sun; Tao Liu; Simon Gibbons; Wen-Ju Zhang; Qing Mu; Flavonoids from Sophora moorcroftiana and their Synergistic Antibacterial Effects on MRSA. Phytotherapy Research 2013, 28, 1071-1076, 10.1002/ptr.5098.

14. Prathusha Kakarla; Jared Floyd; Munmun Mukherjee; Amith R. Devireddy; Madhuri A. Inupakutika; Indrika Ranweera; Ranjana Kc; Ugina Shrestha; Upender Rao Cheeti; Thomas Mark Willmon; et al. Jacyln AdamsMatissa BrunsShravan Kumar GundaManuel Varela Inhibition of the multidrug efflux pump LmrS from Staphylococcus aureus by cumin spice Cuminum cyminum. Proceedings of the National Academy of Sciences 2000, 97, 1433-1437, 10.1073/pnas.030540979.

15. Maria Amélia Grácio; António J Dos Santos Grácio; Miguel Viveiros; Leonard Amaral; Since phenothiazines alter antibiotic susceptibility of microorganisms by inhibiting efflux pumps, are these agents useful for evaluating similar pumps in phenothiazine-sensitive parasites?. International Journal of Antimicrobial Agents 2003, 22, 347-351, 10.1016/s0924-8579(03)00204-8.

16. Frank R. Stermitz; Peter Lorenz; Jeanne N. Tawara; Lauren Ženewicz; Kim Lewis; Synergy in a medicinal plant: Antimicrobial action of berberine potentiated by 5'-methoxyhynocarpin, a multidrug pump inhibitor. Proceedings of the National Academy of Sciences 2000, 97, 1433-1437, 10.1073/pnas.030540979.

18. Jeffrey R. Aeschlimann; Linda D. Dresser; Glenn Kaatz; Michael J. Rybak; Effects of NorA Inhibitors on In Vitro Antibacterial Activities

28. Stefano Sabatini; Francesca Gosetto; Serena Serritella; Giuseppe Manfroni; Oriana Tabarrini; Nunzio Iraci; Jean Pierre Brincat; Emanuele Carosati; Milena Villarini; Glenn Kaatz; et al.Violetta Cecchetti Pyrazole[4,3-c][1,2]benzothiazines 5,5-Dioxide: A Promising New Class of Staphylococcus aureus NorA Efflux Pump Inhibitors. *Journal of Medicinal Chemistry* **2012**, *55*, 3586-3572, 10.1021/jm201446h.

31. Fanny Fontaine; Arnaud Hequet; Anne Sophie Voisin-Chiret; Alexandre Bouillon; Aurélien Lesnard; Thierry Cretelie; Claude Jolivalt; Sylvain Rault; First Identification of Boronic Species as Novel Potential Inhibitors of theStaphylococcus aureusNorA Efflux Pump. *Journal of Medicinal Chemistry* **2012**, *55*, 3586-3572, 10.1021/jm201446h.

32. Di Wang; Kunpeng Xie; Dan Zou; Meizhu Meng; Mingjie Xie; Inhibitory effects of silybin on the efflux pump of methicillin-resistant Staphylococcus aureus.. *Molecular Medicine Reports* **2018**, *18*, 827-833, 10.3892/mmr.2018.9021.

34. Mayara Ladeira Coelho; Josie Haydée Lima Ferreira; José Pinto De Siqueira Júnior; Glenn W. Kaatz; Humberto Medeiros Barreto; Ana Cavalcante; Inhibition of the NorA multi-drug transporter by oxygenated monoterpenes. *Microbial Pathogenesis* **2016**, *99*, 173-177, 10.1016/j.micpath.2016.08.026.

43. Laise Adriane Hegeto; Katiany R. Caleffi-Ferracioli; Joãovitor Perez De Souza; Aryadne Larissa De Almeida; Sandra Sayuri Nakamura De Vasconcelos; Isabella Letícia Esteves Barros; Pedro Henrique Canzein; Paula Aline Zanetti Campanerut-Sá; Regiane Bertin De Lima Scodro; Vera Lucia Dias Siqueira; Jorge Juarez Vieira Teixeira; Rosilene Fressatti Cardoso; Promising Antituberculosis Activity of Piperine Combined with Antimicrobials: A Systematic Review. Microbial Drug Resistance 2019, 25, 120-126, 10.1089/mdr.2018.0107.
44. Andraž Lamut; Lucija Peterlin Mašić; Danijel Kikelj; Tihomir Tomašić; Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. Medicinal Research Reviews 2019, 39, 2460-2504, 10.1002/med.21591.
49. Sepideh Hassanzadeh; Sara Ganjoo; Mohammad Reza Pourmand; Rahil Mashhadi; Kiarash Ghazvini; Epidemiology of efflux pumps genes mediating resistance among Staphylococcus aureus; A systematic review. Microbial Pathogenesis 2019, 139, 103850, 10.1016/j.micpath.2019.103850.
52. Jie Heng; Yan Zhao; Ming Liu; Yue Liu; Junping Fan; Xianping Wang; Yongfang Zhao; Xuejun Cai Zhang; Piperine Combined with Antimicrobials: A Systematic Review. Medicinal Research Reviews 2016, 2, 9-18, 10.1089/mdr.2018.0107.
53. Manuel Varela; Clara E. Sansom; Jeffrey K. Griffith; Structural comparison of bacterial multidrug efflux pumps of the major facilitator superfamily. Trends in Cell & Molecular Biology 2016, 10, 131-140.

Keywords

antimicrobial agents; multidrug resistance; bacteria; pathogens; major facilitator superfamily; transporters; sequence motifs; infection

Retrieved from https://encyclopedia.pub/620