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The prediction of nitrogen not only assists in monitoring the nitrogen concentration in streams but also helps in optimizing

the usage of fertilizers in agricultural fields. A precise prediction model guarantees the delivering of better-quality water for

human use, as the operations of various water treatment plants depend on the concentration of nitrogen in streams
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1. Introduction

Human activities have provoked serious effects on nutrient cycle, streams ecological functioning, and water quality .

Presently, agriculture production consummately depends on the amount of fertilizers and pesticides used. Fertilizers

mainly contain nitrogen compared with other chemicals. Crops require nitrogen for their growth and for the production of

fruits or grains. Some agricultural specialists have also recommended using the fertilizers that carry a higher percentage

of nitrogen . However, only 40%–70% of nitrogen compounds applied as fertilizers are absorbed by the crops. The

remaining nitrogen compounds either percolate downward with water to join groundwater or flow along with the runoff

water to join the streams . In both cases, the nitrogen concentration in water escalates, which can affect human health

. If pesticides and fertilizers are added to the fields at a high rate, there is more chance for nitrate to percolate to the

aquifer, increasing the nitrate level in groundwater . In warmer countries, the loss of total nitrogen is more, as

mineralization rate is probably higher due to the higher temperature; thus, the percolation of total nitrogen is increased .

The major proportion of the surplus nitrogen is transported by the runoff water to the streams, and consequently, nitrogen

compounds such as ammonia-nitrogen, nitrite, and nitrate, are escalated in the streams. A surfeit of nitrogen in streams

seems to be deleterious for both human beings and aquatic lives. In water bodies, it may lead to the magnification of

aquatic plants and algae, which can result in the depletion of dissolved oxygen and hinder the contact of water with air

and light. The presence of such excess nitrogen in drinking water reduces the amount of oxygen transported in the blood

. Mostly, treatment plants are not designed for the full removal of nitrogen compounds from river water. In China,

sewage treatment systems remove total nitrogen by 40%–70% . In Malaysia, sewage treatment plants are not

designed for ammonia removal . Recently, several water treatment plants have been forced to shut down when, after

testing the samples, it was found that ammonia-nitrogen pollution has crossed the acceptable limit in different rivers in

Malaysia. The abrupt closure of the water treatment plant affects the water supply to the consumers. Thus, adding

additional pressure on the government for arranging alternate source of water supply.

The lack of monitoring systems leads to an abrupt increase in pollution, which can result in the closure of the water

treatment plants. Monitoring systems should contain a proper predictive system: which works based on the historical data;

and a treatment system: that deals with the nitrogen pollutant, should be developed in treatment plants. Predictive

systems could provide the daily data of pollutants and thus save the daily effort of quantifying such data in the laboratory.

Moreover, predictive systems would create an alert for nitrogen surge in rivers before it actually happens. Hence, the

government would have ample time to optimize various nitrogen inputs in the rivers. Different river basins require separate

predictive model, trained on historical data of basin’s parameters because a model well-trained on historical data of one

particular basin, not necessarily will perform with same accuracy on different basins. Hence, the government require

separate predictive model for each basin. Also, to consider the upcoming seasonal changes the predictive models need to

be re-trained with the real-time data quarterly or yearly basis. Observing the increased pollution of nitrogen in rivers, this

topic becomes important to be evaluated.

ANN models have been utilized for developing better-precision water quality predictive models . The

computational intelligence, among which ANN is one, has become a fast-evolving area . The applications of ANN are

not limited to water quality prediction. According to He, Oki, Sun, Komori, Kanae, Wang, Kim and Yamazaki , ANNs

have been successfully used for reservoir operations , water resources management , and
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hydrological processes . Application in water resources management includes river flow forecasting , rainfall-

runoff modeling , and water quality predictions . The present study is confined to water quality predictive

systems only.

2. Effects of Nitrogen

Nitrogen, if present in river water causes different disorders, which are deleterious for both human and aquatic animals.

Nitrogen present in streams are mainly found in three compound states: ammonia, nitrate, and nitrite. Some amounts of

ammonia present in the river water get converted to nitrate depending on the dissolved oxygen concentration in the water

. As stated earlier, nitrate is not much deleterious, but if present in surplus amount, it starts converting into nitrite, which

is very harmful even in minute concentration. The Environmental Protection Agency has set standards that state that for

water that is to be distributed for public use, the maximum acceptable nitrate concentration is 10 mg/l  and that for

nitrite is 1 mg/l.

There are two major effects of ammonia on whole ecosystem: eutrophication of marine and terrestrial ecosystems 

and increase in the acidity of water bodies . Excessive nutrients such as nitrogen and phosphorus when present in

water bodies lead to the growth of algae on the top surface of water; this process is termed as eutrophication. Excess

grown algae cover the whole water surface, blocking the contact of water from sunlight and air. Additionally, the algae

growth decreases the oxygen level in water body, which affects the aquatic lives. Stream eutrophication was recognized

as a major problem years ago, and the United States along with other countries commenced nutrient control measures in

rivers .

Streams may get acidified due to the presence of surfeit ammonia. The most common form of ammonia, ammonium

sulphate, leads to formation of considerable amount of acid, as hydrogen ions are released during nitrification. Also, nitrite

ions present in the streams lead to the formation of nitric acid under different situations along with sulfate ions,

consequently acidifying the stream water . Acidic stream water is not even suitable for reuse to satisfy human water

requirements. As stated by Gündüz , one day, reuse of treated water would be a reality for the rural population, and this

would result in serious problems such as human health issues. Compared with urban areas, agricultural areas are more

susceptible to health risks by the presence of nitrate-nitrogen in groundwater .

Nitrite has been found to be more toxic than nitrate and if present in drinking water can cause human health problems

such as liver damage and in worst cases can lead to various types of cancer  and two types of birth defects .

Nitrite present in surplus quantity in drinking water will eventually lower the ability of bloodstreams to carry oxygen,

leading to the lack of oxygen in the body. Infants and young livestock are lamentably affected, as this causes “blue baby

syndrome” . The reaction of nitrites with amines either enzymatically or chemically leads to the formation of potent

carcinogenic nitrosamines .

Consumption of nitrates leads to various tumors in the human body . In the digestive system, nitrate leads to the

formation of N-nitroso compounds , which are considered to be carcinogenic. Iodine uptakes can be restricted by

nitrates, causing thyroid-related problems .

3. ANN

ANN is a black-box computational model  that contains interconnected network-like structures passing values to other

nodes of the connections. It contains an input layer, hidden layers as required, and an output layer. It is well known for its

capability of predicting the non-linear variables . ANN forms the same structure as neurons in the human brain .

It functions like a biological neuron, receiving the input as stimulus, evaluating the stimulus, and then providing the output

as the response to the stimulus. Figure. 1 represents a simple example of the neural network. The inputs are fed to the

nodes in the input layer, and those nodes pass the values of input data to the nodes in hidden layer 1 via interconnecting

links. As the values are passed from input nodes to the following nodes, it is multiplied with the weights and then passed

to the corresponding layer through a transfer function . Likewise, it is passed up to the output layer, where the error is

calculated using target vector. Based on this error, weights get adjusted to obtain the exact weighted combination of the

input data for forecasting the target vector.
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Figure 1. Basic structure of neural network.

The major advantage of application of ANN model, over traditional model, such as statistical model, is that it learns itself

the complexity of nature, without being explicitly transformed into mathematical form . Statistical models, have a

limitation of assuming additional information to derive a sharp conclusion . The major disadvantage of ANN is that it is

susceptible to overfitting. Overfitting is the state in training, beyond which, training error decreases but the model starts

losing its ability of generalizing the relation between input and output for the new data set i.e. the testing set data. This

results in increasing the testing error and decreasing the overall performance of the model. There are several ways to

prevent the model from overfitting, among which well-known method is early-stopping; in which training process is

stopped early. But if the training is stopped too early then model fails to learn important information. Hence, training

should be stopped accordingly to learn all important information without overfitting.

Many types of ANNs feature different concepts of data processing. Each type is designed differently to obtain a more

precise output with less data processing time. This is achieved by changing the networks architecture. According to Jain,
et al. , based on the network connection pattern, i.e., their architecture, ANN is classified into two categories:

3.1. Feed-Forward Neural Networks (FFNNs)

FFNN has the simplest network connection pattern in which data flow in the forward direction only, starting from the input

layer to hidden layers, and then to the output layer. No loops are formed in the paths of the data flow. As shown in Figure.

2, FFNN is classified into three subcomponents: single-layer perceptron, multilayer perceptron, and radial basis function

neural network (RBFNN). Single-layer perceptron, which consists of one layer, i.e., the output layer, is the simplest form of

neural network. It is mainly used for classifying the linearly separable cases that use binary targets. The connection

patterns of multilayer perceptron and RBFNN are the same: an input layer, as many hidden layers as required, and an

output layer. The only difference between these two is the use of the data processing function. Multilayer perceptron

utilizes either threshold function or sigmoidal function  in each of its computational units, whereas RBFNN utilizes radial

basis function as the activation function in each unit of its hidden layers. The table 1 presents the advantages and

disadvantages of different models of FFNN. These models are generally used for time series prediction, system control,

and data classification.

3.2. Recurrent or Feedback Neural Networks

Recurrent or feedback neural networks experience the backward flow of data in some computational cells. The data flow

is not unidirectional; loops within the cells transfer back the feedback of the errors encountered in computations, with

reference to the target values. The feedback of errors helps in updating the weights of the corresponding inputs. As shown

in Figure. 2, feedback neural network is classified into four subcomponents: adaptive resonance theory model, Hopfield

networks, Kohonen’s networks, and competitive networks. Table 1 presents their advantages and disadvantages. These

networks form very complex architectures, composed of a number of loops. These networks are utilized for complex

computations, such as speech recognition, image processing, robotics, and process controls. This study is limited to the

review of the FFNN.
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Figure 2. Classification of neural network .

Table 1. Advantages and disadvantages of different ANN models

Main Type Model Name Advantages Disadvantages

FFNN
(Feed-Forward Neural

Network)

Single Layer
Perceptron

Less computation—time

Easy to setup

Can only be used in linearly separable

data

Multi-Layer
Perceptron

Can be used for complex

problems

Need more time for training

Can get stuck in local minima

RBFNN

Less susceptible to be

stuck in local minima

Can tolerate with input

noise

Classification is slow, as the network

have to calculate the radial basis

function for each input vector during

classification
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Main Type Model Name Advantages Disadvantages

Recurrent/Feedback
Network

ART (Adaptive
Resonance

Theory) model

Can be integrated with

other models to enhance

the performance

Some ART models are inconsistent.

They depend upon the order of the

training data

Hopfield Network No training needed

Handles a smaller number of

memories.

More number of patterns results in

spurious output

Kohonen’s SOM

Provides deterministic

and reproducible results

Simplicity of computation

Performance depends on initialization

Competitive
Network

Groups the similar

pattern based on the

data correlation

Susceptible to stability issue

4. Hybrid Model

Hybrid model is the combination of different models to solve a computational task. The need of hybridization aroused

when the learning models were observed to be very efficient in some cases and inefficient in most of the cases . The

main aim of Hybridization is to resolve the limitations of individual model by fusion of decision making models with

learning models . The main advantage of hybrid model is that it provides better results in comparison to the standalone

model. The decision making model integrated in hybrid model provides good start with selected initial values of the

internal parameters of learning models. Hence, increasing the productivity of the learning model. The disadvantages of

the hybrid models are: overall training process is time consuming, complex architecture and training requires modern

computational resources. Some of the examples of hybrid models are :

ANN and genetic algorithm

ANN and fruit fly optimization algorithm

ANN and firefly algorithm

ANN and artificial immune systems

ANN and particle swarm-optimization algorithm

The following authors have developed various predictive models for nitrogen prediction in water bodies:

Table 2. A summary of studies that utilize ANN model for nitrogen prediction, including their specific area, location, and

methods used.

  Authors Specific Area Location Method

1 Anctil, Filion and Tournebize Streams Melarchez,
France Stacked multilayer perceptron

2 He, Oki, Sun, Komori, Kanae,
Wang, Kim and Yamazaki Streams Japan Feed-forward model

3 Holmberg, Forsius, Starr and
Huttunen Streams Finland Backpropagation algorithm

4 Lek, Guiresse and Giraudel Streams The United
States Multilayer feed-forward
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  Authors Specific Area Location Method

5 Suen and Eheart Streams Illinois, The
United States Backpropagation and radial basis

6 Sharma, Negi, Rudra and Yang Drainage
water Canada Fast backpropagation and self-organizing radial

basis

7 Wang et al. Groundwater Australia 13 machine learning models

8 Zhang et al. Lake China ARIMA, radial basis, and hybrid

9 Markus et al. Streams Illinois Backpropagation, Evolutionary Polynomial
Regression (EPR), and Naïve Bayes Model (NBM)

10 Amiri and Nakane Stream Japan Backpropagation and Multiple Linear Regression
(MLR)

11 Zeleňáková et al. Streams Slovakia Dimensional analysis
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