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1. Introduction

Proteases are enzymes that catalyse the hydrolysis of peptide bonds within proteins, facilitating their cleavage; this

hydrolysis can either activate, inactivate, or modulate the activity of the target protein. The identities of the amino acid

residues that form the catalytic site have been used to group human proteases into serine, cysteine, matrix metallo-,

aspartyl, and threonine protease classes. Within the lung, serine, cysteine and metalloproteases have received the most

attention to date . In healthy cells and tissues, both intracellular and extracellular protease activity is well managed by

regulation at the transcriptional and translational levels, as well as by inhibitory pro-domains, modulatory factors (such as

pH), and antiproteases at the protein level. However, higher-than-normal protease levels and excessive protease activity

are recognised as hallmarks in chronic lung diseases (CLDs) and we continue to gain a greater appreciation of how the

protease burden contributes to pathology .

Lung health is a product of many environmental and host factors, including exposure to toxins, particulates or pathogens,

the mounting of appropriate immune responses to such stimuli, efficient ventilation mechanics and effective gas

exchange. The mucosal surfaces of the airways are important interfaces for environmental and host factors, and

alterations at this interface are a common feature in patients with CLD. The mucosal surface of the airway is composed of

epithelial cells, many of which are ciliated, and is coated with a thin apical layer of mucus, resident and recruited immune

cells, and the inhaled contents of the airway lumen. In many CLDs, the most obvious clinical symptoms are related to

airway mucus, its excessive production, and an inability to clear it. MCC is a vital feature of the innate immune system in

the airways . A number of processes are essential to maintain effective MCC including regulation of ion channel

activity, ciliary beat frequency (CBF), mucin expression and secretion and mucus viscosity . Mucus is a hydrogel

composed of water, salts, large mucin polymers, non-mucin proteins, lipids, and cellular debris . Under normal

conditions, water makes up 97–98% of mucus, producing a loose and mobile gel that ably protects the airway surface

from inhaled pathogens and toxins, which are removed from the airways by ciliary beat and cough. However, in many

CLDs, and especially the so-called ‘muco-obstructive’ lung diseases (chronic obstructive pulmonary disease (COPD),

cystic fibrosis (CF), primary ciliary dyskinesia (PCD) and non-CF bronchiectasis), mucus composition is radically altered,

producing a hyper-concentrated mucus layer . The osmotic pressure of this hyper-concentrated mucus layer

can exceed that of the subjacent periciliary layer, causing compression and flattening of the cilia, resulting in impaired

ciliary beating and reduced mucus clearance. This leads to mucostasis and the build-up of mucus plaques and plugs in

the airway lumen, producing muco-obstructive lung disease. The inciting causes of these original changes in the airways,

mucus composition and MCC, vary between the different muco-obstructive lung diseases (environmental factors,

recurrent infection, genetic mutations to ion channels etc.), but they share pathological mechanisms, many of which are

mediated or modulated by proteases.

2. Proteases and Mucus

2.1. Proteases and Ion Transport

Ion channel activity is critical to maintain the airway surface liquid (ASL) at an appropriate height for effective MCC .

This is primarily achieved through the regulation of Cl  secretion and Na  absorption via the chloride channel, cystic

fibrosis transmembrane conductance regulator (CFTR) and the sodium channel, epithelial sodium channel (ENaC),

respectively . Defects in airway ion transport result in the development of muco-obstructive lung diseases, most notably

with the loss of CFTR function in CF . The role of proteases in regulating airway ion transport has largely focused on
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the activation of ENaC. ENaC undergoes maturation in the Golgi through the removal of an inhibitory peptide in its α-

subunit by furin-type convertases . These processed channels are classed as having intermediate open probability.

However, release of a second inhibitory peptide from the γ-subunit at the plasma membrane can result in ENaC channels

with a high open probability. This secondary cleavage is under the regulation of extracellular proteases. A number of

proteases have been shown to cleave γ-ENaC, increasing the open probability of ENaC; these include serine proteases

such as channel activating protease (CAP)-1, neutrophil elastase (NE), trypsin, chymotrypsin, prostasin and

transmembrane protease serine 4 (TMPRSS4), as well as the cysteine proteases cathepsin B (CTSB) and cathepsin S

(CTSS) . Indeed, inhibition of trypsin-like serine proteases using the synthetic inhibitor ONO-3403

resulted in marked improvements in pulmonary dysfunction and emphysema in a murine model of CLD, indicating the

importance of this ENaC-regulatory process . Bacterial proteases including alkaline protease released from

Pseudomonas aeruginosa also cleave and activate ENaC . This activation of ENaC by both human and bacterial

proteases is highly relevant in CLD, particularly where bacterial colonisation is prevalent. Increased ENaC activity is

associated with severity in COPD and was shown to cause muco-obstructive lung disease in mice . Conversely,

decreased ENaC activity in patients with pseudohypoaldosteronism improved mucus clearance rates .

Protease-dependent regulation of CFTR has also been observed. Unlike ENaC, CFTR is not activated by proteolytic

cleavage at the plasma membrane. However, the level of CFTR present at the cell surface is under the regulation of the

cysteine protease calpain, which cleaves mature CFTR at the plasma membrane, allowing it to be internalised in vesicles

for degradation . Increased calpain activity is observed in CF, resulting in instability and reduced cell surface retention

of CFTR that reaches the plasma membrane . NE released from activated neutrophils, which are abundant in the

chronically inflamed lung, also induces proteolysis and internalisation of CFTR on airway epithelial cells via the induction

of this calpain-dependent degradation pathway . Protease-dependent CFTR dysfunction may be important in chronic

lung conditions beyond CF . Indeed, CFTR function is associated with severity of emphysema in COPD . There is

also increasing evidence that loss of CFTR function resulting from exposure to cigarette smoke may promote smoking-

associated lung disease . These regulatory mechanisms are highly valuable in allowing dynamic changes in salt and

water reabsorption and secretion in response to changing environments. However, in muco-obstructive lung disease, with

a loss in protease/antiprotease balance, increased protease activity could lead to excessive Na  absorption and/or loss of

Cl  transport, with associated dehydration of the airways. Acidification of the ASL as a result of CFTR dysfunction may

also play a part, stimulating the activity of cysteine cathepsins and further upregulating ENaC activity . These studies

highlight important roles for proteases in maintaining airway ion balance. Additionally, they suggest that targeting

proteases may aid in regulating and maintaining effective ion transport and ASL height in muco-obstructive lung disease.

The majority of research into protease regulation of airway ion channel activity has used cell culture models or Xenopus
laevis oocytes. As such, there is currently little evidence for the direct therapeutic benefit of using protease inhibitors to

alter ion channel activity in muco-obstructive lung disease, and this should be an area for future study.

2.2. Proteases and Ciliary Function

Cilia lining the epithelium of the airways play an important role in driving MCC; beating in a synchronised fashion, they

facilitate removal of pathogens and debris trapped in the mucus layer. In the large airways, ciliated cells typically make up

~80% of the epithelium . In muco-obstructive lung disease, ciliary beating is hindered by airway dehydration and

increased mucus viscosity. Furthermore, as a result of goblet cell hyperplasia, the percentage of ciliated cells in the airway

epithelium can drop as low as 20% . The importance of proper ciliary function is evident in PCD, where abnormal ciliary

beating leads to mucus plugging and chronic infection . Protease activity contributes both directly and indirectly to the

maintenance of ciliary stability and function. Optimal CBF is required for MCC and is regulated by a number of factors

including cyclic adenosine monophosphate (cAMP)-dependent phosphorylation, intracellular Ca  levels and pH .

Ciliary beating is powered by molecular motors known as dyneins, which induce a series of contractions along the nine

doublet microtubules making up the extracellular cilia axoneme and in doing so, produce the ciliary beat . As such,

dynein is an essential component of motile cilia. Cleavage of dynein by the serine proteases trypsin and subtilisin results

in a loss of ciliary motility . In addition to these human proteases, bacterial proteases are also capable of disrupting

airway cilia by the same mechanism . NE has also been shown to reduce CBF in vitro in human nasal bronchial

epithelial cells. However, this effect was only observed in cells that were treated with high concentrations of NE .

Reductions in CBF in this case were likely a result of damage to the ciliated cells rather than a mechanistic alteration to

ciliary beat, as histological examination revealed epithelial disruption while the number and ultrastructure of the cilia

appeared normal . This is still a significant finding because along with goblet cell metaplasia, this protease-dependent

cell damage may contribute to the significant reduction in ciliated cells in the diseased airways. In contrast, while direct

protease activity may lead to ciliated cell disruption, activation of protease-activated receptor (PAR)-2 by proteases

secreted from airway neutrophils increases ciliary beating by 30–50% through the induction of Ca  signalling . This

could represent a clearance mechanism initiated during inflammation to clear inflammatory stimuli from the airways.
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In addition to altering cilia motility, proteases can also affect cilia stability. Increased intracellular calpain activity is

associated with diminished formation of cilia. Cilia require anchoring to the cell cytoskeleton by a basal body from which

the axoneme is assembled. Calpain targets proteins in the basal body, resulting in a loss of anchoring and failed cilia

formation . The specific substrate(s) of calpain in the basal body structure have not been fully elucidated, though ezrin,

a protein involved in plasma membrane/actin cytoskeleton interactions, is localised to the basal body and, as a known

substrate of calpain, is a likely candidate . These data present a varying effect of proteases on ciliary function.

Increased protease activity in the chronically inflamed lung leads to reduced ciliary stability and motility and disruption of

ciliated epithelial cells. Conversely, PAR-2 signalling may increase CBF in those ciliated cells that remain intact.

2.3. Proteases and Mucus Properties

Sitting atop the periciliary layer is a layer of mucus that traps debris and pathogens as it gradually moves from the distal to

proximal airways along the mucociliary escalator. This mucus layer consists primarily of water, but also contains large

polymeric mucin glycoproteins that determine the viscoelastic properties of the mucus layer . These mucins are

separated into secreted and tethered mucins depending on their properties. In the airways, the predominant secreted gel-

forming mucins are mucin (MUC)-5AC and MUC5B . Maintaining a mucus layer with the right properties is important for

effective MCC and alterations in the composition of this mucus layer are associated with the development of chronic

airway diseases . Regulation is achieved through the maintenance of a number of factors including mucin

expression and secretion, and mucus viscosity, which is largely determined by mucus hydration and crosslinking of

mucins .

2.3.1. Mucin Expression

The role of proteases in the regulation of mucin gene expression has been examined in several studies, largely focusing

on the regulation of MUC5AC expression, with little assessment of the regulation of MUC5B. This is likely a result of the

current dogma that MUC5AC upregulation is the driving force behind mucus phenotypes in CLDs, while MUC5B is

required for maintaining normal MCC . The serine protease NE induces MUC5AC messenger ribonucleic acid (mRNA)

and protein in airway epithelial cells (AECs) through increased mRNA stability or via a retinoic acid receptor-dependent

mechanism . Furthermore, induction of oxidative stress by NE has been shown to increase MUC5AC expression 

. Changes in MUC5AC expression were not observed upon exposure of AECs to cysteine or metalloproteases in this

study, suggesting these mechanisms may be specific to serine proteases . However, in a separate study, a disintegrin

and metalloprotease 17 (ADAM-17) and matrix metalloprotease 9 (MMP-9) induced MUC5AC expression through the

activation of epidermal growth factor receptor (EGFR) . Another serine protease, human airway trypsin-like protease

(HAT) indirectly induced mucin gene expression in AECs through a similar mechanism . Treatment of AECs with HAT

induced expression and secretion of the EGFR ligand amphiregulin, leading to EGFR pathway activation and increased

MUC5AC expression . Interestingly, protease-mediated changed in CFTR and ENaC activity may also impact mucin

production. For example, changes in these ion channels have been shown to lower intracellular Zn  concentrations by

inducing alternative splicing of the zinc importer, ZIP2, which in turn drives MUC5AC hypersecretion .

In addition to human proteases, fungal proteases also regulate mucin expression. Notably, proteases released by

Aspergillus fumigatus, a fungus that is highly prevalent in the early CF lung, induce MUC5AC expression . A more

recent study identified a Ras/Raf1/extracellular signal-regulated kinase (ERK) signalling pathway through which mucin

expression was induced by fungal proteases . Upregulation of MUC5AC by NE and other proteases in CLD will alter

the MUC5AC/MUC5B ratio in favour of MUC5AC. This is important, as a higher MUC5AC/MUC5B ratio has been

observed in pathogenic conditions including asthma . The reason for the more pathogenic nature of MUC5AC is not

fully understood. However, the tendency of MUC5AC to form sheets, and increased tethering to the airway epithelium,

may play a part in impairing MCC to promote disease . Impairing MCC would also be of benefit to fungal species

trying to colonise the airway, giving an evolutionary advantage to those that induce MUC5AC expression. Future studies

providing a clearer understanding of how proteases regulate the expression of MUC5B will be important not only in muco-

obstructive lung disease, due to its role in MCC , but also the wider field of CLD including in idiopathic pulmonary

fibrosis where a MUC5B promoter polymorphism and impaired MCC are associated with disease development .

2.3.2. Mucin Secretion

Following translation, mucins are packaged in a dehydrated form in secretory granules. Upon exocytosis the mucins are

hydrated, absorbing more than 100 times their volume in water and, in the process, expand and acquire the correct

viscoelastic properties to allow effective MCC . Secretion of mucins is an incredibly rapid process occurring within a few

hundred milliseconds . Additionally, this secretory process is highly inducible, increasing over 1000-fold in response to

certain stimuli . Mucus hypersecretion is a major component of muco-obstructive lung diseases associated with

declining lung function . Metalloproteases including ADAM-10, meprin-α, and MMP-9, as well as the neutrophil
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serine proteases NE, cathepsin G and proteinase 3, are potent mucus secretagogues, inducing goblet cell degranulation

and secretion of mucins from airway submucosal glands . The specific mechanisms through which proteases

induce mucin secretion are not fully understood. A number of key pathways have been highlighted in the literature. A study

by Takeyama et al. demonstrated that cell-bound NE, but not free NE, could induce goblet cell degranulation, suggesting

that a secondary signal may be required from the intercellular adhesion molecule (ICAM)-1 on the neutrophil cell surface

to induce degranulation . The intracellular signalling pathways that may be involved in this process were not elucidated

in this study. More recently, NE was shown to induce mucin secretion via a protein kinase C (PKC)-dependent mechanism

involving phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS), a PKC target and key regulator of

mucin secretion . Additionally, miR-146a negatively regulates NE-induced MUC5AC secretion from AECs through the

inactivation of c-Jun N-terminal kinase (JNK) and nuclear factor kappa B (NF-κB) signaling . Much like mucin

expression, it is not only human proteases that regulate mucin secretion. Bacterial proteases including Pseudomonas
elastase B, alkaline protease, and protease IV have all been shown to induce mucin secretion .

2.3.3. Mucus Viscoelastic Properties

Once secreted, gel-forming mucins MUC5AC and MUC5B form part of the mucus gel layer. The concentration of mucins

in this layer contributes to its viscoelastic properties. Healthy mucus contains approximately 3% solids, having the

consistency of egg whites . However, in chronic lung disease this can increase to up to 15% solids as a result of airway

dehydration coupled with increased mucin expression and hypersecretion . However, it is not only the solid content of

mucus that determines its viscoelastic properties; a number of other factors influence mucus viscosity including pH,

extracellular deoxyribonucleic acid (DNA) content and the presence of mucin crosslinking, which occurs via the formation

of disulphide bonds between mucins during oxidative stress . Besides regulating mucin expression and secretion,

proteases also regulate mucus viscoelastic properties by directly acting on secreted mucin proteins. In vitro studies have

demonstrated that serine proteases are capable of degrading mucins . While this would seem to suggest that protease

activity may decrease mucus viscosity, this has not been directly measured. Importantly MUC5B is required for MCC and

therefore its degradation could in fact hinder airway clearance . Furthermore, proteases regulate the release of

neutrophil extracellular traps (NETs) . Induction of NET formation and subsequent increases in extracellular DNA may

contribute to increased mucus viscosity. NETs also provide a protective lattice around proteases preventing access and

inhibition by their natural inhibitors . Bacterial species in the airway use mucolytic proteases to promote colonisation

by inhibiting entrapment in the mucus layer and to gain access to the airway epithelium. P. aeruginosa-derived elastase B

(pseudolysin) degrades both MUC5AC and MUC5B . Mucins in the airways are highly sulphated, a mechanism to

protect against degradation from bacterial proteases. However, P. aeruginosa has evolved the ability to secrete

sulfatases, allowing it to bypass this protective barrier . Fungal species including A. fumigatus break down mucins, not

only to promote colonisation, but also to utilise it as a nutrient source . A summary of the effects of proteases on mucus

and MCC in muco-obstructive lung disease can be found in Figure 1.

Figure 1. The effect of proteases on mucus and mucociliary clearance in the chronically inflamed airway. Proteases

contribute to CLD pathogenesis through their impact on every step of the MCC mechanism. Elevated protease activity

leads to (A) activation of ENaC and (B) loss of CFTR at the epithelial surface contributing to airway surface dehydration.

(C) Protease-dependent damage to ciliated epithelial cells and cleavage of ciliary proteins leads to ineffective mucus
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clearance. This clearance defect is compounded by (D) protease-mediated increases in mucin expression and secretion

from goblet cells and submucosal glands resulting in a highly viscous mucus layer that can no longer be cleared

effectively. (E) Proteases can degrade mucins and (F) induce release of NETs, which may further alter mucus viscoelastic

properties. Together, protease-dependent mucin/mucus hypersecretion and mucus dehydration produce highly viscous

mucus, setting the stage for mucus plugging in the airways of patients with muco-obstructive lung disease.
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