

Non-Nutritive Sweeteners and Metabolic Syndrome

Subjects: [Allergy](#)

Contributor: Myron Szewczuk

Artificial sweeteners have gained increasing attention as dietary assessment tools to help combat the obesity epidemic by providing a sweet taste without the extra calories. Individuals widely use non-nutritive sweeteners (NNS) in attempts to lower their overall daily caloric intake, lose weight, and sustain a healthy diet. Recent studies have suggested that NNS consumption can induce gut microbiota dysbiosis and promote glucose intolerance in healthy individuals that may result in the development of type 2 diabetes mellitus (T2DM).

[non-nutritive sweeteners](#)

[type 2 diabetes mellitus](#)

[gut microbiota](#)

[GPCR](#)

[insulin receptor signaling](#)

[miRNAs](#)

1. Introduction

Artificial sweeteners have gained increasing attention as dietary assessment tools to help combat the obesity epidemic by providing a sweet taste without the extra calories [1]. Taste has a significant role in human perception of food quality, contributing to its overall pleasure and enjoyment. To this end, the development of sweeteners as food additives that mimic the sweet taste of natural sugars suggest promise [2]. These artificial sweeteners are classified as nutritive or nonnutritive, both of which enhance the flavor and texture of food. Nutritive sweeteners contain carbohydrates and provide calories (energy). Non-nutritive sweeteners (NNS) are very low calorie or zero calorie alternatives that provide minimal or no carbohydrates or energy [3].

As part of dietary intake, NNS consumption can modulate energy balance, and metabolic functions through several peripheral and central mechanisms, suggesting that NNS are not inert compounds as once thought [4]. However, the specific mechanism(s) and details of the effects of NNS consumption on host metabolism and energy homeostasis remain to be elucidated. This is particularly relevant as NNS have been an option for individuals to improve their health; yet, NNS consumption has been associated with increased risk factors for metabolic syndrome [5]. Here, metabolic syndrome refers to the collection of physiological, biochemical, clinical, and metabolic factors that contribute to the increased risk of cardiovascular disease and type 2 diabetes mellitus (T2DM) [6]. Based on measurements and laboratory tests, metabolic syndrome can also contribute to hypertension, glucose intolerance, proinflammatory state, atherogenic dyslipidemia, prothrombic state [7], and kidney disease [8]. It is noteworthy that the cause of these health-related issues may be due to emerging contaminants in the environment worldwide and their associated risks to human health and the environment [9]. Interestingly, one study identified a total of 24 non-nutritive artificial sweeteners studies to their occurrence in the environment from 38

locations globally across Europe, including the United Kingdom, Canada, United States, and Asia. Overall, the findings of the study indicated that non-nutritive artificial sweeteners are present in surface water, tap water, groundwater, seawater, lakes, and atmosphere [9]. Furthermore, in a Norwegian pregnancy cohort study, sucrose-sweetened soft beverages were reported to increase the risk of congenital heart defects (CHDs) in offspring, while fruit juices, cordial beverages, and artificial sweeteners had no associations with CHD [10].

2. Current Status on the Use of Non-Nutritive Sweeteners

Currently, the Food and Drug Administration (FDA) has approved the use of acesulfame-potassium (Ace-K), aspartame, neotame, saccharin, sucralose, and stevia (<https://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm397725.htm>). Saccharin was discovered as early as 1876 and was the “original” artificial sweetener used in the food industry. Unfortunately, saccharin and many of its sweet alternatives have been considered to be health hazards, and as a result, are banned in many countries. Recently, other sweeteners have been developed and implemented within the food industry. In general, there are three primary types of sweeteners used in the food industry today: high-intensity sweeteners (e.g., acesulfame potassium, advantame, aspartame, neotame, saccharin, and sucralose), sugar alcohols (e.g., erythritol, glycerol, mannitol, sorbitol, and xylitol), and natural sweeteners (e.g., honey, lucuma powder, maple syrup, monk fruit known as *Siraitia grosvenorii* swingle fruit extract, stevia, and yacon syrup) [11]. These sweeteners and their uses in the food industry are summarized in **Table 1**. The high-intensity sweeteners can be synthetic or natural and are classified into two categories: nutritive and non-nutritive. The majority of high-intensity sweeteners used today fall into the non-nutritive category, with the exception of aspartame. Sugar alcohols are found naturally in small amounts in fruits and vegetables but are produced commercially in larger quantities.

Table 1. Classification of Food and Drug Administration (FDA)-approved sweeteners.

Name	Brand Names	Applications in Food Industry	Relative Sweetness (Measured to Sucrose)
High-intensity Sweeteners			
Saccharin	Sweet and Low®, Sweet Twin®, Sweet'N Low®, Necta Sweet®	Beverages, bases, and mixes for many food products, table sugar substitute	200–700×

Name	Brand Names	Applications in Food Industry	Relative Sweetness (Measured to Sucrose)
Aspartame *	Nutrasweet [®] , Equal [®] , Sugar Twin [®]	Soft drinks, chewing gum, pudding, cereals, instant coffee Also distributed as a "General Purpose Sweetener"	200×
Acesulfame-potassium (Acesulfame-K)	Sunett [®] , Sweet One [®]	Beverages, candy, frozen desserts, baked goods Heat stable so it can be used in baking	200×
Sucratose	Splenda [®]		600×
Neotame	Newtame [®]	Beverages, candy gum	7000–13,000×
Advantame	N/A	Baked goods, beverages, frozen desserts, frosting, chewing gum, candy, pudding, jelly and jam, gelatin	20,000×
Sugar Alcohols			
Erythritol		Fondant, ice cream, gum, tabletop sweeteners, chocolate, dairy products, jelly, beverages	0.60×–0.70×
Glycerol		Dairy products, processed fruits, energy bars, jam, fondant	

Name	Brand Names	Applications in Food Industry	Relative Sweetness (Measured to Sucrose)
		Often used as a thickening agent and to provide texture to food	
Mannitol		Infant formula, frozen fish, precooked pasta, butter, chocolate flavored coatings	0.50×–0.70×
Sorbitol (Glucitol) *		Used as emulsifier	0.66×
Xylitol		Hard candy, chewing gum, mints, ice cream, chocolate, cookies, beverages, table sugar substitute	1×
Natural Sweeteners			
Steviol glycosides	Natural constituents of leaves of <i>Stevia rebaudiana</i> (Bertoni) plant, commonly known as Stevia	Beverages, chewing gum, candy	200–400×
Luo Han Guo Monk fruit extracts	<i>Siraitia grosvenorii</i> Swingle fruit extract (SGFE)	Tea	100–250×
Lucuma powder		Beverages, pudding, granola, pastry, baked goods	

5. Hess, E.L.; Myers, E.A.; Swithers, S.E.; Hedrick, V.E. Associations between Nonnutritive Sweetener Intake and Metabolic Syndrome in Adults. *J. Am. Coll. Nutr.* 2018, 37, 487–493.

6. Kaur, J. A Comprehensive Review on Metabolic Syndrome. *Cardiol. Res. Pract.* 2014, 2014, 943162.

7. Gottscho, S.; Meneely, G.; Daniels, S.R.; Donato, K.A.; Ekel, R.; Franklin, B. Artificial Sweeteners. <https://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredientsmanagement/the-shwedes-sweet-syndrome-an-american-heart-association-national-heart-lung-and-blood-institute-scientific-statement>. *Circulation* 2005, 112, 2735–2752.

8. Dehmel, C.M.; Young, B.M.; Katz, A.; Cooper, K.L.; Canthers, T.C.; Nowood, V.; Currea, A. Patterns of Beverages Consumed and Risk of Incident Kidney Disease. *Clin. J. Am. Soc. Nephrol.* 2019, 14, 49–56.

There are now growing concerns over obesity and other health issues, and as a result, there will be a demand for sweet alternatives. Consumers can be classified broadly into two categories:

9. Praveena, S.M.; Cheema, M.S.; Guo, H.-R. Non-nutritive artificial sweeteners as an emerging contaminant in environment: A global review and risks perspectives. *Ecotoxicol. Environ. Saf.* 2019, 170, 699–707.

10. Dale, M.T.G.; Magnus, P.; Leirgul, E.; Holmstrøm, H.; Gjessing, H.K.; Brodwall, K.; Haugen, M.; Stoltenberg, C.; Øyen, N. Intake of sucrose-sweetened soft beverages during pregnancy and risk of congenital heart defects (CHD) in offspring: A Norwegian pregnancy cohort study. *Eur. J. Epidemiol.* 2019.

11. Shvedova, A.A.; Sviridov, C.; Swift, C.; Rose, T. Non-nutritive sweeteners: Where are we today? Diabetes low-calorie sweeteners 2012, 25, 104–110. Sugar in baked goods, candies, and ice cream is increasing [12]. This high consumer pool opens a larger market for food manufacturers, making it increasingly important to understand artificial sweeteners and the roles they play in the lives of consumers worldwide. The preferences for specific sweeteners may impact food and beverage sales, so it is important that manufacturers stay abreast of the scientific developments surrounding each sweetener and what their impact may have on the demand for that specific sweetener.

12. Sylvetsky, A.C.; Rother, K.I. Trends in the consumption of low-calorie sweeteners. *Physiol. Behav.* 2016, 164, 446–450.

13. Phillips, M.J. Gut Reaction: Environmental Effects on the Human Microbiota. *Environ. Health Perspect.* 2009, 117, A198–A205.

14. Heidari-Beni, M.; Kelishadi, R. The role of dietary sugars and sweeteners in metabolic disorders. Despite FDA approval of several sucrose alternatives marked as Generally Recognized As Safe (GRAS), there remains growing concern about the potentially harmful side effects associated with NNS consumption. Although several epidemiologic studies are focusing on artificial sweetener use and weight gain, it is critical that when interpreting such studies we consider factors that affect causality, and caution for confounding factors such as age, diet, cognitive aging, and dementia. *In Molecular Basis of Nutrition and Aging: Monographs in the Gaps in our Knowledge Series*; San Diego, CA, USA, 2016; pp. 381–385.

15. Seetharaman, S. Chapter 24. The influences of dietary sugar and related metabolic disorders on cognitive aging and dementia. *In Molecular Basis of Nutrition and Aging: Monographs in the Gaps in our Knowledge Series*; San Diego, CA, USA, 2016; pp. 381–385.

16. Stanhope, K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy. *Crit. Rev. Clin. Lab. Sci.* 2016, 53, 52–67.

4. Physiological Effects of Non-Nutritive Sweeteners

17. Pepino, M.Y. Metabolic effects of non-nutritive sweeteners. *Physiol. Behav.* 2015, 152, 450–455.

18. Greenstone, J.C. Non-sugary and diet sweeteners in NNS and the high fructose corn syrup, Sucrose and sugar alcohols. *Springer New York*, US, 2014; pp. 63–84.

19. Janssen, S.; Depoortere, I. Nutrient sensing in the gut: New roads to therapeutics? Trends Endocrinol. Metab. 2013, 24, 92–100.

20. Chaudhary, N.; Roper, S.D. The cell biology of taste. *J. Cell. Biol.* 2010, 190, 285–296.

Sugar diets have been associated with insulin resistance, β -cell dysfunction, and additional cardiovascular

21. **LaFerla, A. *et al.*** Non-nutritive sweeteners, the brain, and the evolutionary roles of the sweet taste receptor in oral and extraoral upregulation. *Gut* **2014**, *63*, 171–179.

22. Xu, H.; Staszewski, L.; Tang, H.; Adler, E.; Zoller, M.; Li, X. Different functional roles of T1R subunits in the heteromeric taste receptors. *Proc. Natl. Acad. Sci. USA* **2004**, *101*, 14258–14263.

23. Brown, R.J.; Rother, M.J. Non-nutritive sweeteners and their role in the gastrointestinal tract. *J. Clin. Endocrinol. Metab.* **2012**, *97*, 2597–2605.

24. Chandrashekhar, J.; Hoon, M.A.; Ryba, N.J.; Zuker, C.S. The receptors and cells for mammalian taste. *Nature* **2006**, *444*, 288.

25. Freund, J.R.; **Gut Microbiota Dysbiosis** Taste receptors in the upper airway. *World J Otorhinolaryngol Head Neck Surg.* **2018**, *4*, 67–76.

26. Zhang, Y.; Hoon, M.A.; Chandrashekhar, J.; Mueller, K.L.; Cook, B.; Wu, D.; Zuker, C.S.; Ryba, N.J. Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways. *Cell* **2003**, *112*, 293–301.

27. Urwyler, S. Allosteric modulation of family C G-protein-coupled receptors: From molecular insights to therapeutic perspectives. *Pharmacol. Rev.* **2011**, *63*, 59–126.

28. McLaughlin, S.K.; McKinnon, P.J.; Margolskee, R.F. Gustducin is a taste-cell-specific G protein closely related to the transducins. *Nature* **1992**, *357*, 563–569.

29. McLaughlin, S.K.; McKinnon, P.J.; Spickofsky, N.; Danho, W.; Margolskee, R.F. Molecular cloning of G proteins and phosphodiesterases from rat taste cells. *Physiol. Behav.* **1994**, *56*, 1157–1164.

30. **Kinnamon, S.C.** Taste receptor signaling in the tongue and lungs. *Am. J. Physiol.* **2012**, *302*, 156–168.

31. Finger, T.E.; Kinnamon, S.C. Taste isn't just for taste buds anymore. *F1000 Biol. Rep.* **2011**, *3*, 20.

32. Margolskee, R.F.; Dyer, J.; Kokrashvili, Z.; Salmon, K.S.; Illegems, F.; Daly, K.; Maillet, E.; Ninomiya, Y.; Mosinger, B.; Shirazi-Beechey, S.P. T1R3 and gustducin in gut sense sugars to regulate expression of Na⁺-glucose cotransporter 1. *Proc. Natl. Acad. Sci. USA* **2007**, *104*, 15075–15080.

33. Gerspach, A.C.; Steinert, R.E.; Schönenberger, L.; Gruber-Maier, A.; Beglinger, C. The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans. *Am. J. Physiol.*

5. Non-Nutritive Sweeteners Interact with Sweet-Taste Receptors

34. Nakagawa, Y.; Nagasawa, M.; Yamada, S.; Hara, A.; Mogami, H.; Nikolaev, V.O.; Lohse, M.J.; Shigemura, N.; Ninomiya, Y.; Kojima, I. Sweet taste receptor expressed in pancreatic β -cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. *PLoS ONE* **2009**, *4*, e5106.

The **ON** the **Universal** preference for sweetness once served to support survival as it was associated with food reward and energy (calories) in the form of carbohydrates; however, sweetness is now often delivered via added

35. Nagy, J.B.; Moran, A.W.; Gao, C. From the tongue to the gut: taste perception in the gut. *Postgrad. Gastroenterol. Nutr.* **2011**, *53*, 601–605.

36. Han, P.; Bagenna, B.; Fu, M. The sweet taste signalling pathways in the oral cavity and the gastrointestinal tract affect human appetite and food intake: A review. *Int. J. Food Sci. Nutr.* **2019**, *70*, 125–135.

37. Sweet by mouth and sweet by gut: the role of sweet-taste receptors in the regulation of food intake. *J. Clin. Investig.* **2007**, *117*, 13–23.

38. Cani, P.D.; Everard, A.; Duparc, T. Gut microbiota, enteroendocrine functions and metabolism. *Curr. Opin. Pharmacol.* **2013**, *13*, 935–940.

39. Steinert, P.F.; Feinle, B.; Bisset, G.; Asarian, L.; Horowitz, M.; Beglinger, C.; Geary, N. Ghrelin, CCK and neurotransmitter release. *Physiol. Rev.* **2016**, *97*, 411–463.

40. Fernstrom, J.D. Non-nutritive sweeteners and obesity. *Annu. Rev. Food Sci. Technol.* **2013**, *6*, 119–136.

41. Stearns, A.T.; Balakrishnan, A.; Rhoads, D.B.; Tavakkolizadeh, A. Rapid upregulation of sodium-1,4,5-trisphosphate and diacylglycerol. These compounds, in turn, activate the transient receptor potential cation channel subfamily M member 5 (TRPM5), which subsequently increase intracellular calcium and neurotransmitter release. *Ann. Surg.* **2010**, *251*, 865–871.

42. Moran, A.W.; Al-Rammahi, M.A.; Arora, D.K.; Batchelor, D.J.; Coulter, E.A.; Daly, K.; Ionescu, C.; Bravo, D.; Shirazi-Beechey, S.P. Expression of Na⁺/glucose co-transporter 1 (SGLT1) is enhanced by supplementation of the diet of weaning piglets with artificial sweeteners. *Br. J. Nutr.* **2010**, *104*, 637–646.

43. Kreuch, D.; Keating, D.J.; Wu, T.; Horowitz, M.; Rayner, C.K.; Young, R.L. Gut mechanisms linking intestinal sweet sensing to glycemic control. *Front. Endocrinol.* **2018**, *9*, 741.

44. Decker, K.J. Potential Mechanisms for NNS-Induced Metabolic Deviations: Satiety Hormone Secretion and Alterations in the Gut Microbiota. *DePaul Discov.* **2018**, *7*, 5.

45. Brown, R.W.; DeBartolo, M.A.; Pether, K. Artificial sweeteners. *Am. J. Clin. Nutr.* **2010**, *83*, 805–812.

46. Egan, J.M.; Margolskee, R.F. Taste cells of the gut and gastrointestinal chemosensation. *Mol. Interv.* **2008**, *8*, 78–81.

47. Brotzen, E.; Velpodi, I.; Sjöström, M.; Tjärnström, A. Glucose, A Transporter 1 (SGLT1) and into circulation through the gut. *Diabetologia* **2006**, *49*, 1387–1397.

48. David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. *Nature* **2014**, *505*, 559–563.

49. Alzamora, S.; Barreiro, A.; Uribarri, M.; Olivares, T.; Pina, M. Non-nutritive sweeteners and SGLT-1: The role of the gut function, suggesting that the gut microbiota is the pathophysiology and prevention of liver disease. *Adv Nutr Biochem*. 2018; **41**:1–8. Thus, it is thought that NNS can potentiate SGLT-1 function and glucose absorption [43]. NNS including sucralose and Ace-K

50. Kallus, S.J.; Brandt, L.J. The intestinal microbiota and obesity. *J. Clin. Gastroenterol.* 2012; **46**, 16–24. Thus, it is thought that NNS can potentiate SGLT-1 function and glucose absorption [43]. NNS including sucralose and Ace-K

51. Larsen, N.; Vogensen, F.K.; Van Der Berg, F.W.; Nielsen, D.S.; Andreassen, A.S.; Pedersen, B.K. Disorders, including obesity and T2DM [45–50]. Thus, it is possible that NNS can stimulate sweet taste receptors on intestinal EECs to promote the release of these hormones involved in glucose homeostasis [18–20]. adults with type 2 diabetes differs from non-diabetic adults. *PLoS ONE* 2010; **5**, e9085.

6. Non-Nutritive Sweeteners Interfere with Gut Microbiota Composition

52. Eckburg, P.B.; Leiberman, M.; Turnbaugh, P.J.; Fierer, N.; Gordon, J.I. Diversity of the human intestinal microbial flora. *Science* 2005; **308**, 1635–1638.

The gut microbiota consists of millions of bacteria, viruses, and fungi that exist symbiotically within the gut and 53. Castaner, O.; Goday, A.; Park, Y.-M.; Lee, S.-H.; Magkos, F.; Shiow, S.-A.T.E.; Schröder, H. The begins to develop at birth [47]. The composition and function of the microbiota varies not only amongst individuals, gut microbiome profile in obesity: A systematic review. *Int. J. Endocrinol.* 2018; **2018**, 9109451. but also changes throughout an individual's life, affected by external factors such as environmental stressors,

54. Turnbaugh, P.J.; Gordon, J.I. Bacterial contributions to human health: Human gut microbiota in health and disease. *Science* 2009; **324**, 1469–1473. intestinal microbiota associated with obesity. *Nature* 2006; **444**, 1022–1023. variability in lifestyle and genetics amongst individuals

55. Kasai, C.; Sugimoto, K.; Moritani, I.; Tanaka, J.; Oya, Y.; Inoue, H.; Tameda, M.; Shiraki, K.; Ito, metabolic syndrome; however, the details are still in the process of being understood [38]–[50]. In particular, it has M.; Takei, Y.; et al. Comparison of the gut microbiota composition between obese and non-obese been reported that T2DM is associated with alterations in microbiota composition [51]. individuals in a Japanese population, as analyzed by terminal restriction fragment length

polymorphism and next-generation sequencing. *BMC Gastroenterol.* 2015; **15**, 100. In the human gut, the most common phyla are the Gram-positive *Firmicutes* and the Gram-negative *Bacteroidetes*

56. Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zilberman, T.; Gaiday, S.; Weinberger, A. Higher ratio of *Firmicutes* to *Bacteroidetes* in obese mice is glucose intolerant by altering the indigenous microbiota. *Nature* 2014; **514**, 181–186. increasing with weight loss [53]–[55]. As a result, it has been

57. Wong, S.K.; Chin, K.-Y.; Suhami, F.H.; Fairus, A.; Ima-Nirwana, S. Animal models of metabolic syndrome: A review. *Nutr. Metab.* 2016; **13**, 65. It has been speculated that the differences in the phyla present may be associated with the development of obesity, a component of metabolic syndrome. However, there are conflicting results, and specific roles of phyla have not yet

58. Connor, S.C.; Hansen, M.K.; Corner, A.; Smith, R.F.; Ryan, T.F. Integration of metabolomics and transcriptionomics data to aid biomarker discovery in type 2 diabetes. *Mol. Biosyst.* 2010; **6**, 909–921.

59. Koropatkin, N.M.; Cameron, E.A.; Martens, E.C. How glycan metabolism shapes the human gut microbiota. *Nat. Rev. Microbiol.* 2012; **10**, 323–335. Suez and colleagues first reported the dysbiosis that occurs as a result of NNS consumption in animal studies [56].

60. Bibbò, S.; Dore, M.P.; Pesci, G.M.; Delitala, G.; Delitala, A.P. Is there a role for gut microbiota in type 1 diabetes pathogenesis? *Ann. Med.* 2017; **49**, 11–22. There are several diet-induced animal models of metabolic syndrome, in which the animals are fed a single type or a combination of diets, investigating the whole-body effects of metabolic syndrome such as through hormones,

61. Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Khauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, P.; Tuohy, K.M.; Chabo, C.; et al. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. *Diabetes* 2007; **56**, 1761–1772. species in the gut being linked to enhanced energy harvest that promotes lipogenesis in mice through glycan degradation pathways [57]. Interestingly, the metagenomes of saccharin-consuming mice were found to be enriched

with pathways such as sphingolipid metabolism and lipopolysaccharide biosynthesis, both of which have been associated with T2DM and obesity [58]–[59]. Perhaps the most intriguing result of the study was that the

62. Tardieu, F.; Ceppele, F.; Jager, W. B. Disturbance of inflammatory signaling pathways in reverse tends to insulin resistance in people. *Front Endocrinol (Lausanne)* 2013, **3**, 181. Effects were transferable to germ-free mice [60]. Thus, it is essential that we consider the gut microbiota composition when developing treatment strategies for T2DM and obesity within the metabolic syndrome platform. *Nutrients* 2011, **3**, 341–369.

64. Saito, Q. Gain weight by going diet? Artificial sweeteners and the neurobiology of sugar. *the driving force of metabolic syndrome* 2010 May 10. *Bio Med* 2010, **3**, 101–108.

65. Ritzé, Y.; Bárdoš, G.; D’Haese, J.G.; Ernst, B.; Thurnheer, M.; Schultes, B.; Bischoff, S.C. Effect of high sugar intake on glucose transporter and weight regulating hormones in mice and humans. *PLOS ONE* 2014, **9**, e101702.

66. Renwick, A.G.; Sims, J.; Snodin, D.J. Sucrose metabolism and pharmacokinetics in man. *Food Chem. Toxicol.* 2000, **38**, 31–41.

67. Pepino, M.Y.; Bourne, C. Nonnutritive sweeteners, energy balance and glucose homeostasis. *Curr. Opin. Clin. Nutr. Metab. Care* 2011, **14**, 391–395.

68. Moran, A.W.; Al-Rammahi, M.; Zhang, C.; Bravo, D.; Calsamiglia, S.; Shirazi-Beechey, S.P. Sweet taste receptor expression in ruminant intestine and its activation by artificial sweeteners to regulate glucose absorption. *J. Dairy Sci.* 2014, **97**, 4955–4972.

69. Booth, D. Conditioned satiety in the rat. *J. Comp. Physiol. Psychol.* 1972, **81**, 457–471.

Retrieved from <https://encyclopedia.pub/entry/history/show/34790>

Figure 2. Gut microbiota dysbiosis and metabolic syndrome. Dysbiosis of the *Firmicutes:Bacteroidetes* ratio is associated with several conditions characteristic of metabolic syndrome, including weight gain/obesity, insulin resistance, high-fat diets, gut permeability, and inflammatory bowel disease (IBD). As a result, NNS consumption may contribute to the development of these conditions due to alterations in the *Firmicutes:Bacteroidetes* ratio. A *bifidobacteria* decrease combined with an *enterobacteria* increase leads to endotoxemia that causes a chronic low-grade inflammation associated with some pathological conditions such as insulin resistance and increased gut permeability. A right balance in the microbiota may be considered in gut homeostasis and maintaining the

microbiota can be considered prebiotics and restore eubiosis in some pathological conditions. Abbreviations: IBD, inflammatory bowel disease; NNS, non-nutritive sweeteners.

7. Non-Nutritive Sweeteners Interfere with Learned Responses to Sweetness

Sugar and its sweet-tasting nutritive and non-nutritive alternatives have become a staple in the diet. However, sweet-taste has been associated with learned behavior [63]. As discussed previously, sugar consumption has been associated with an increased GLUT2 and GLUT5 expression, which play a role in CCK expression in the ileum of isocaloric diet-fed rats enriched with fructose or glucose [64]. The enriched diets provide additional calories, resulting in animals having enhanced total caloric intake [65]. In contrast to natural sweeteners such as fructose or sucrose, NNS was thought to be excreted after passing through the GI tract unchanged resulting in no energy gain [66].

Theoretically, the metabolic effects observed with the use of natural sweeteners should be absent with NNS consumption. Paradoxically, NNS consumption has been associated with weight gain. It is hypothesized that the separation of sweetness from calories interferes with physiological responses and the interaction of NNS with sweet-taste receptors in the gut that affect glucose absorptive capacity and homeostasis [67][68]. Although epidemiological studies have shown an association between artificial sweetener use and weight gain, evidence of a causal relationship is limited; however, recent animal studies provide intriguing information that supports an active metabolic role of artificial sweeteners [45]. Indeed, the low or zero caloric value of NNS can result in caloric compensation, whereby there is an adjustment for calories consumed at one occasion by reducing caloric intake at subsequent opportunities. Thus, weakened caloric compensation can result in excess energy intake that ultimately leads to increased weight gain [69].