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Glycans are major constituents of extracellular vesicles (EVs). Alterations in the glycosylation pathway are a
common feature of cancer cells, which gives rise to de novo or increased synthesis of particular glycans.
Therefore, glycans and glycoproteins have been widely used in the clinic as both stratification and prognosis
cancer biomarkers. Interestingly, several of the tumor-associated glycans have already been identified in cancer
EVs, which constitutes valuable sources of cancer biomarkers. Furthermore, glycans have also shown to play a
role in EV protein sorting, uptake and tropism. Altogether, the EV glycan signatures hold tremendous potential to be

applied into the clinical setting for both biomarker discovery and as therapeutic delivery systems.

extracellular vesicles glycosylation cancer

| 1. Introduction

Extracellular vesicles (EVs) are small nano-sized particles, secreted by all cell types and capable of encapsulating
and transporting several molecules to a target delivery site [2l. EVs can be found in various biological fluids and can
be harvested in relatively non-invasive ways. Therefore, these particles are attractive systems for targeted drug

delivery approaches and valuable sources of circulating cancer biomarkers.

Alterations of the glycosylation pathway are a common feature of malignant cell transformation B4l These
carbohydrates are capable of modulating several processes during cancer progression, including activation of
oncogenic signaling pathways, interference with cell-cell and cell-extracellular matrix (ECM) adhesion and
mediate cancer cell metastasis B4, In addition, alteration in the glycosylation pattern of a cell has also been
associated with content sorting processes BI8I7 and with the capacity of cells to interact and uptake certain EVs
[BIBILONLL |nterestingly, some of the tumor-associated glycan alterations have already been identified as enriched
in cancer EVs (Figure 1), which may constitute important biomarkers with the potential to be used in the clinical

setting.
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Figure 1. Schematic representation of an extracellular vesicle (EV) and its functional cargo. EVs carry a wide
variety of functional molecules, including glycoproteins and glycolipids. The major common classes of
glycoconjugates found in human cells are depicted on the left. Aberrant tumor-associated glycosylation already
identified in cancer EVs are depicted on the right. The glycostructures were represented at the expected EV
localization (intern or at the EV membrane) considering the knowledge from the cell glycans. Nevertheless, the

specific localization of some of these structures is not yet fully elucidated.

Despite technological advances, the structural characterization of glycans remains quite challenging. The diversity
and complexity of these carbohydrates, together with methodological limitations, makes it challenging to deeply
analyze the EV glycome (22131 The presence of specific glycosylation profiles in tumor EVs highlights its potential
to be used not only to develop novel cancer EV detection and isolation methods but also as a source of novel
circulating biomarkers. In this review, after a brief description of the main types of changes in glycosylation found in
cancer and their impact on different pathological processes, we pointed out the challenges faced by the currently
available methods used in the analysis of the EVs glycome. In addition, we summarized the glycosylation patterns
already identified in tumor-EVs and discussed their known function in cancer and how they have been used to

develop additional EV detection and isolation technologies.

| 2. The Impact of Glycosylation in Cancer Progression
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Glycans are carbohydrate structures that modify both proteins and lipids through a biosynthetic pathway finely
regulated by glycosyltransferases and sugar transporters. Glycans can be mainly found at the surface of the
cellular membrane forming the commonly known glycocalyx, and they are essential mediators of cell—cell
communication and cell-matrix interaction BII24I15] The major types of glycosylation that can be affected in cancer
include (l) N-glycans, characterized by an N-linkage to an Asn residue in an Asn-X-Ser/Thr sequon, where X can
be any amino acid except proline. N-glycans have a defined core structure, and can be classified depending on
their structures and branches in high-mannose, complex or hybrid 18 (1) O-GalNAc glycans, also known as
mucin-type O-glycans, are carbohydrate chains initiated by a GalNAc sugar covalently linked by an oxygen atom to
a Ser/Thr residue. They often appear as long ramified structures, and have multiple core structures, the major
includes core-1 to core-4 14 and (ll) glycosaminoglycans (GAGs), long and non-ramified carbohydrate chains
consisting of repeating disaccharide units 8. The glycosylation pathway is highly regulated by numerous players,
including the expression, localization and activity of both glycosyltransferases and glycosidases, and the availability
of nucleotide sugar donors 12, Therefore, variations in the expression levels of specific glycosyltransferases 22 or
its mislocalization in the endoplasmic reticulum (ER) and Golgi apparatus (GA) 21, dysregulation of chaperone
activity (22l or alterations in nucleotide sugar transporter availability and cofactors 12 will result in the synthesis of

aberrant glycosylation in cancer.

These macromolecules play pivotal roles in several physio- and pathological processes either by functioning as
structural scaffolds, recognition cues or modulators of other important biomolecules 4. Genetic and epigenetic
alterations that disturb the glycosylation machinery often arise during malignant transformation, which results in
loss or increased expression of certain glycans and the appearance of novel glycans @Bl The presence of
aberrant glycosylation in cancer cells can impact several biological processes including tumor cell proliferation 23!,
angiogenesis 24l invasion 22 and metastasis [28. Alterations in the glycosylation pathway provide multiple
adaptive advantages, including receptor tyrosine kinase (RTK) activation 22271281291 regulation of adhesion-
related proteins BYEBUB2 and immune response modulation 13I8 which significantly contribute to cancer

progression. All these aspects will be briefly discussed, as they have already been extensively reviewed [El4134],

| 3. Cancer Extracellular Vesicles Glycosylation

EVs are small nano-sized particles that are released into the extracellular space by all types of cells. These
vesicles exert a broad array of biological functions, being important mediators of intercellular communication &. EV
diameter typically ranges from 35-5000 nm, and therefore are quite smaller than cells, but much larger than
proteins [B3I28]. The general term EVs comprises three main types of vesicles which are classified, according to
their size and biogenesis mechanism, into exosomes, microvesicles (ectosomes or microparticles) and apoptotic
bodies. Exosomes have an endocytic origin and are produced by the inward budding of the plasma membrane of
the cell. This invagination of the cell membrane leads to the formation of multivesicular bodies (MVBSs) that can
later either fuse with lysosomes for content degradation or fuse with the cellular membrane to be secreted in the
form of exosomes. The formation and release of exosomes can be regulated by the endosomal sorting complex

required for transport (ESCRT) 228l |n this type of vesicles, it is expected to find ESCRT proteins and accessory
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proteins for this complex, such as the ALG-2-interacting protein X (Alix), the tumor susceptibility gene 101
(TSG101) and the chaperones HSP70, Hsc70 and HSP90B, independently of the type of cell origin 281391401,
Another mechanism, independent of the ESCRT complex, can be used for exosome release (41l |n the absence of
this complex, the endosome pathway may be regulated by the type Il neutral sphingomyelase and the tetraspanin
family proteins 42, Therefore, exosomes will contain high levels of tetraspanins such as CD9, CD63 and CD81 43,
On the other hand, microvesicles are released into the extracellular space by direct shedding of the plasma
membrane 738 Therefore, microvesicles can carry both cytosolic and plasma membrane proteins, including the
same tetraspanins found on exosomes 44, Microvesicles can also contain cytoskeletal and heat shock proteins
and integrins 42146l Finally, apoptotic bodies are formed during the cellular apoptotic process. The process of cell
apoptosis is characterized by the condensation of chromatin followed by the degradation of the internal structure of
a cell BAB8 The disintegrated cellular content will be part of the apoptotic bodies’ cargo. Therefore, this type of
vesicles can contain proteins associated with several organelles such as histones (nucleus), the heat shock protein
HSP60 (mitochondria) and the chaperone GRP78 (endoplasmic reticulum) 4448149 Evs are composed of a
phospholipid bilayer that provides protection to their cargo against degradation by the proteases and nucleases
present in the external environment AR, EVs encapsulate several molecules, including cytosolic and cytoskeletal
proteins as well as enzymes and nucleic acids (MRNA, miRNA, tRNA, rRNA, DNA) 2581541 The surface of the
EVs is composed of lipids (ceramide, cholesterol, phosphatidylserine and sphingomyelin) and proteins
(transmembrane proteins, antigen presenters and adhesion molecules) [, In addition, glycans are also relevant
constituents of the EV composition surface [BI5SIE5I56] Cancer EVs are able to mediate communication between
cells locally and at a distance, and their cargo can influence the behavior of the recipient cell B4, Importantly, tumor
microenvironment stressors, such as hypoxia B89 acidosis 89, starvation (61162 oxidative stress 63164 radiation
B9 and anti-cancer therapies 62, are important regulators of not only EV secretion and trafficking, but also of its
molecular composition (as reviewed in 8€). EV cargo is mainly similar to the composition of the parental cell &,
Although, they still have unique molecular profiles resultant from specific sorting mechanisms during the EV
biogenesis process. Particularly, specific patterns of glycans were found enriched in Evs BIBIEI |n cancer,
important modifications occurring in surface glycans, both at cellular and EV level, may constitute important

markers for EV detection, isolation and, importantly, for tumoral and non-tumoral EV distinction.

3.1 The Potential Clinical Application of Cancer Extracellular Vesicles
Glycosylation

EVs are capable of carrying several bioactive molecules and, depending on their surface composition, hold the
potential to be used as natural vehicles for localized drug delivery 6889 |n addition, as cancer EVs can be found
in several biofluids X9 and their cargo partially reflects the content of parental cells I, these vesicles are also

considered promising sources of circulating cancer biomarkers.

3.1.1. EV Glycosylation as Therapeutic Delivery Tools

EVs can be re-engineered to carry specific molecules, either by manipulating their parental cells or by direct

functionalization of the EVs /172 Several studies have shown the possibility of using glycosylphosphatidylinositol
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(GPI) as an anchor to attach specific antigens to the membrane of EVs for target therapy purposes. For example,
the HER-2 remained stable after its fusion with GPI and incorporation into murine breast cancer EVs, which
induced strong HER-2-specific antibody responses when injected into mice 2. In addition, fusing anti-EGFR
nanobodies to the GPI anchor of neuroblastoma EVs resulted in a significantly increased capacity of these EVs to
bind tumor cells that overexpress the EGFR 4. Furthermore, the incorporation of the GPIl-anchored immune-
stimulatory molecule interleukin 12 (IL-12) in EVs isolated from different tumor cell lines resulted in increased in
vitro T cell proliferation 2. These studies highlight the potential of modifying the EV surface to successfully
transport antigens to their destination site (Figure 2). To explore the real potential of EVs for cancer drug delivery
purposes, a reliable system capable of tracking both in vitro and in vivo interactions of these natural nanoparticles
is required. Interestingly, a new method of natural particle labeling based on glycan trafficking was recently
reported. In this study, azido-sugars were metabolically incorporated into the cellular glycans and further packaged

into the EVs, which allowed these EVs to be traceable in vivo 8.
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Figure 2. Potential clinical applications of extracellular vesicle (EV) glycosylation. These include (A) development
of glycan-based EV detection and capture methodologies; (B) EV biomarker discovery for cancer diagnostic,
prognostic and/or patient stratification based on EV glycomic and glycoproteomic profiling; (C) development of
potential novel cancer therapy strategies through the manipulation of EV glycosylation surface.After reaching their

target destination, EVs can be incorporated by recipient cells and release their content.

As discussed before, the presence of HSPGs on recipient cells has proved to act as receptors for cancer-derived
EVs . The structure and function of these HSPGs can be regulated by heparanase 4. Interestingly, the use of
heparanase inhibitors showed to block tumor progression by reducing exosome uptake by receptor cells 117879,
Currently, there are some heparanase inhibitors, such as modified heparins or HS mimetics, whose potential use in
the clinic is being tested [BYBLIE28E3IB4] Examples include chemically modified N-desulfated, N-acetylated and
glycol-split heparin derivatives (82 and a heparanase inhibitor €, that alone or together with lapatinib, resulted in
inhibition of the tumor growth in patients with myeloma 2 or in brain metastatic breast cancer, respectively 87,

Interestingly, it was demonstrated that a specific EV glycosylation coating per se can induce a host immunogenic
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response. In melanoma, the modification of apoptotic EVs surface towards overexpression of high mannose type
glycans, a natural ligand of DC-SIGN, increased the uptake of these EVs by monocyte-derived dendritic cells,
leading to an increase in CD8+ T cell response 88, |n addition, the enzymatic removal of sialic acids and insertion
of palmitoyl-LeY in glioblastoma EVs led to an enhanced EV uptake by dendritic cells in a DC-SIGN dependent
manner, a receptor involved in the activation of CD8+ and CD4+ T cell responses 89 Therefore, these studies
showed that modifications of the EV glycan surface hold potential as a vaccination strategy to potentiate an anti-
tumor immune response. The capacity of certain EV glycans to naturally stimulate the immune system should be
further explored for the development of novel potential immune-related therapies.A different strategy with the
potential to be applied for cancer therapy involves the hemofiltration of the patient circulating exosomes using the
Aethlon ADAPT™ system (adaptive dialysis-like affinity platform technology) 9. This system aims to capture
tumoral EVs through interaction with their surface proteins or glycans. The efficacy of the ADAPT™ system was
evaluated in patients with end-stage renal disease. It was possible to reduce the circulating hepatitis C virus by
targeting the high mannose glycans present on the viral particles 1. Although there is no concrete data on its
usage in removing EVs from the circulation of cancer patients, the ADAPT™ system is a promising strategy to
capture tumor EVs based on their glycosylation profile.The role of EVs in modulating therapeutic resistance has
already been reported (as reviewed in [#2]). EVs can be used by tumor cells as resistance mechanisms through the
packaging and release of drugs by these vesicles 23941951 Fyrthermore, the transfer of proteins, such as the
multidrug resistance P-glycoprotein [28IR798I99  or specific microRNAs [L0JIOL102] from drug-resistant cells to
drug-sensitive cells can lead to the modulation of gene expression and the acquisition of resistance in recipient
cells. Since glycans present on the EV surface are important mediators of the interaction and uptake of these
vesicles by the recipient cells BRI changes in the EV glycosylation will alter the intercellular communication
between resistant and sensitive cells. EVs are also capable of modulating the immune response. Through the
delivery of specific cargo, such as immune-stimulatory or immune-suppressive molecules, EVs can regulate the
activity of immune cells (as reviewed in 1931104y As previously addressed in this review, glycosylation is an
important modulator of the immune response, and cancer cells use specific glycan profiles to escape
immunosurveillance. Thus, it is possible that tumor-derived EVs carrying these glycan signatures will also suppress

the immune response.

3.1.2. Cancer Biomarker Discovery

Besides their potential application for cancer therapy, EVs also represent a valuable source of circulating
biomarkers (Table 1). High EV concentrations have been found in several body fluids, including blood, urine, saliva,
cerebrospinal fluid, lymph, pleural effusions, semen, bronchoalveolar lavage, bile, synovial fluid, nasal secretions,
breast milk, ocular effluent and ascites (as reviewed in [293) As alterations in cell glycosylation are a common
feature of cancer progression, and glycans are highly present in cancer EVs 196812071 the disclosure of cancer EV
glycosylation holds a tremendous potential to identify novel reliable cancer EV biomarkers. In fact, most of the
currently available cancer biomarkers are based on the detection of glycans, including the sialyl Lewis A antigen
(CA19-9) and the STn (CA72-4), or glycoproteins, such as the alpha-fetoprotein (AFP), the prostate-specific
antigen (PSA), mucin 16 (CA125), mucin 1 (CA15-3) and the carcinoembryonic antigen (CEA), which are used to

follow both patient treatment response and tumor recurrence in several types of cancers (as reviewed in 4l
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[208) |nterestingly, the carbohydrate antigen CA125 was identified in serum-derived exosomes from patients with
ovarian cancer and the detected levels were significantly higher in the exosomes when compared to the levels
detected directly in the serum of these patients (129, Yokose and his collaborators also studied the glycan profiles
of serum EVs and revealed a significant increase in O-glycosylated EVs in pancreatic cancer patients in the early
stages of the disease, even when the patient samples were negative for the CA19-9 antigen 119, |nterestingly,
elevated levels of CA19-9 were detected in exosomes from pancreatic cancer patients when compared to healthy
samples. The analysis of CA19-9 in exosomes proved to be more sensitive than its direct measurement from the
serum, which allowed to identify CA19-9 positive exosomes in patients thought to be negative for the presence of
this antigen 111, In addition, a highly glycosylated form of the CD133 glycoprotein carrying increased levels of
sialic acids was found in exosomes from pancreatic cancer patient’s ascites and was also associated with patient
survival. Although further studies are needed, these results demonstrate the prognosis potential of CD133-specific
glycosylation in pancreatic cancer 22l |n addition to glycoproteins, the glycosphingolipids abundantly present on
the surface of prostate cancer EVs have also been reported as promising biomarkers for this type of cancer 1131,
The overexpression or de novo synthesis of particular glycans or glycoconjugates during cancer progression holds
the potential to differentiate tumor EVs from benign EVs. Indeed, the proteoglycan glypican-1 (GPC1) and the
tumor antigen chondroitin sulfate proteoglycan 4 (CSPG4) were detected in tumor exosomes from heterogeneous
samples of pancreatic cancer 114 or melanoma 113, respectively. In both cases, these glycoproteins were able to
differentiate tumor-derived EVs from non-malignant particles. In a recent study, the proteoglycan versican (VCAN)
and the glycoprotein tenascin C (TNC) also proved to be able to distinguish tumor from non-tumor tissues with high
sensitivity and specificity, pointing to their use as cancer EVs markers 118 |n the same study, the galactoside-
binding soluble 3 binding protein (LGALS3BP) was identified in most of the EV samples [218] which is in line with
the previous reports of the presence of LGALS3BP in uveal melanoma 17 and ovarian cancer EVs [B8IL18]
Interestingly, the LGALS3BP protein was also found to be strongly enriched in the recently discovered cancer
exomere particles 2. Moreover, the glycoprotein basigin (CD147 or EMMPRIN) and the proteoglycan biglycan
(BGN) were found enriched in pancreatic tumor EVs when compared to EVs secreted by non-tumor adjacent
tissues 128l |n accordance, highly glycosylated variants of EMMPRIN were predominantly detected on cancer
patient-derived microvesicles and were positively correlated with poor survival in several types of cancer 119, |n
addition, the O-GIcNAc glycosylation has also been found elevated in breast 129 and colorectal cancer EVs 121
when compared to normal conditions. In particular, the O-GIcNAc modification of the transitional endoplasmic
reticulum ATPase (TER ATPase) and RuVB-likel proteins was identified in colorectal metastatic EVs 121, Elevated
levels of O-GIcNAc were also detected in TER ATPase as well as in 70 kDa heat-shock protein (HSP70) proteins
present in breast cancer EVs, which may act to protect cytosolic and nuclear proteins against degradation 2%, The
elevated presence of this type of glycosylation modification conjugated with specific proteins identified in tumoral
EVs when compared to normal conditions suggests its potential use as a biomarker for both breast cancer and
metastatic colorectal cancer.Despite the high potential of EV glycosylation in the discovery of novel cancer
biomarkers, studies addressing the glycan profile of blood circulating EVs are still quite scarce. Nevertheless, the
N-glycome of exosomes from hepatocellular carcinoma patient samples was characterized using a reverse capture
strategy, and the majority of the N-glycans found in EVs from patients with HCC were modified with sialic acids or

fucoses, in contrast to the N-glycans identified in EV from healthy samples 122 Walker et al. also reported
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significant differences between the glycan profiles identified directly in the plasma or the plasma-derived EVs from
the same individuals 123 |nterestingly, a new integrated analytical platform, termed the integrated magnetic
analysis of glycans in extracellular vesicles (iIMAGE), was developed to directly analyze the EV glycosylation profile
in biological samples. This platform aims to facilitate the EV glycome analysis taking advantage of the magnetic
nanotechnologies (124, The effectiveness of this strategy was evaluated by spiking kidney and brain cancer-EVs
into urine and serum EV-depleted samples, respectively, and analyzing the glycan signatures. This strategy proved
to be efficient in detecting EVs. Subsequently, when analyzing the glycan profile of ascites samples from patients
with gastric and colorectal cancer, it was possible to distinguish patients based on their prognosis only by the
glycans present at the EV surface. The distinction of these patients was possible by the increased signal of
different lectins associated with a poor prognosis, including the Jacalin, ConA, RCA120, PHA-E, STA, LEL, WGA,
DSL and LCA lectins. Although further studies are needed to prove the IMAGE platform’s robustness, this new
method of profiling glycans may prove to be very useful in the search for novel biomarkers in cancer research 1241,
Although several techniques can be used to analyze glycans, their study faces several technical challenges. The
most commonly used methods only provide relative and not absolute quantification of the glycans present in a
sample and are often based on a targeted search for specific patterns of cancer-associated glycans 123 |n
addition, the variability of the results obtained when the same samples are analyzed in different laboratories, in
which different methods were used, demonstrates the difficulty in choosing the best methodology, and the need for
reference standards that support that choice 2281, Nevertheless, the presence of different glycosylation profiles
under normal and cancer conditions highlights the potential of studying EV-specific glycosylation for the
identification of novel cancer circulating biomarkers. Indeed, the studies addressing EV glycosylation denote a high
potential of EV glycans to distinguish from normal vs. tumoral EVs. Therefore, we believe further in-depth studies

of EV glycosylation will bring several benefits for the future of cancer patients.
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