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Immune checkpoint inhibitors (ICIs) improve the survival of patients with multiple types of cancer. However, low
response rates and atypical responses limit their success in clinical applications. The paradoxical acceleration of
tumor growth after treatment, defined as hyperprogressive disease (HPD), is the most difficult problem facing
clinicians and patients alike. The mechanisms that underlie hyperprogression (HP) are still unclear and
controversial, although a large number of studies have investigated the phenomenon and several associated
factors have been reported. Gamma-interferon (IFN-y) is a key cytokine in antitumor response and its levels
increase during ICI therapy. Even though this factor has been widely associated with resistance to ICI therapy, it
has not yet been demonstrated to be directly associated with HP. Nevertheless, data suggest that IFN-y may
contribute to HP onset through different mechanisms, including the activation of the inflammasome pathway, the
expression of the immunosuppressive enzyme IDO1 and the triggering of activation-induced cell death (AICD) in

effector T cells. These findings make IFN-y worthy of attention in the context of HPD development.

hyperprogression hyperprogressive disease cancer immune checkpoint inhibitors

immunotherapy IFN-y tumor microenvironment MDSC IDO1 AICD

| 1. Introduction

Cancer immunotherapy aims to strengthen the immune system against tumors. The introduction of immunotherapy
into clinical practice has provided clinicians with an innovative tool for the treatment of various solid and
hematologic malignancieslll. One of the most successful strategies is the administration of immune checkpoint
inhibitors (ICls), which are a wide range of monoclonal antibodies directed toward immune checkpoint (IC) proteins
that are expressed on tumor cell and/or immune cell surfaces. The targeting of ICs reverses tumor-mediated
immunosuppression and awakens immune responseslZ. The use of ICls, either as monotherapy or combo-therapy;,
has shown favorable outcomes and remarkably long-term responses in patients with a large variety of cancer
types, especially malignant melanoma and lung cancerBl4l3l, The Food and Drug Administration (FDA) has so far
approved seven ICls that target cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed death-1 (PD-1) and PD-
ligand 1 (PD-L1) for the treatment of several tumor types®. Nevertheless, response rates, according to the
Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, for IC blockade in patients with solid tumors,
range from 18 to 40% B, as the beneficial clinical effects of ICI therapy are not long-lasting in some cases &,
Moreover, the unique mechanism of action of ICIs can lead to unconventional responses, making IC blockade

harmful to a subset of patients. Among these novel responses, the most relevant, in terms of negative clinical
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outcome, is hyperprogressive disease (HPD), a paradoxical acceleration of tumor growth induced by ICI therapy!&l.
Even though several factors have been proposed as leading causes of HPD development, including alterations in
T-cell subpopulations EI2OLLAZ " tymor cellsLIL4ILSIIGILANALINZ0]  cytokine secretion[2L22l[231124]  gng

inflammation(22/28], the mechanisms underlying hyperprogression (HP) after ICI therapy remain unknown.

| 2. Role of IFN-y in HPD development

Gamma-interferon (IFN-y) is a major regulatory and effector cytokine predominantly produced by T and natural
killer (NK) cells in response to inflammatory and immune stimuli. In the tumor microenvironment (TME), IFN-y,
mainly produced by infiltrating T lymphocytes (TILS), is a key player in tumor immunosurveillance. The antitumor
action includes antiproliferative, antiangiogenic and proapoptotic effects2728I29B0I81] iy addition to the
upregulation of major histocompatibility complex (MHC) class | molecules on tumor cells22E3l, Moreover, IFN-y
activates CD8* cytotoxic T lymphocytes, CD4* Th1 cells, NK cells, dendritic cells (DCs) and macrophages, and
stimulates the latter to switch towards the tumoricidal and proinflammatory M1 phenotypel33IB4I35] Conversely,

IFN-y also inhibits regulatory T (Treg) cell differentiation and function28l,

On the other hand, IFN-y exerts a paradoxical immunosuppressive role that supports tumor progression and
disseminationBZIE8I39 For instance, the activation of the IFN-y receptor (IFNGR) on tumor cells activates the
JAK/STAT signaling pathway, resulting in PD-L1 upregulation2241l42] Nevertheless, alterations in the JAK/STAT
pathway have been frequently associated with resistance to ICI therapy“344l45l] Human melanoma cell lines with
loss-of-function mutations in either JAK1 or JAK2 do not express IFN-y-response genes after IFN-y exposure. The
analysis of the transcriptome of advanced melanoma under ICI therapy has highlighted an association between
clinical response to treatment and the expression of IFN-y-response genes involved in MHC class | and Il
upregulation8), Resistance to ICI therapy may therefore be due both to the incapacity of tumor cells to induce the
full set of IFN-y-response genes and to the loss of sensitivity to IFN-y signaling. Interestingly, prolonged IFN-y
receptor signaling in tumor cells can also mediate resistance to ICls through epigenomic changes in the JAK/STAT
pathway®Zl. IFN-y can even support tumorigenesis by influencing the TME. The IFN-y signaling pathway can
indeed increase angiogenesis in the TME by inhibiting the expression of vascular endothelial growth inhibitor
(VEGI) [48]. IFN-y also suppresses the action of immune effector cells via the upregulation of immunosuppressive

cytokines, including 1L-21, IL-27 and |L-35M42BABLG2G3IE4] and by the recruitment and differentiation of Treg cells
and myeloid-derived suppressor cells (MDSCs)BR3IEIB7IEEI59][601[61](62][63]

All of the above-reported examples highlight the role that IFN-y plays in tumor resistance to ICI therapy. Based on

this evidence, it is reasonable to assume that IFN-y is worthy of investigation in the context of HPD.

2.1. IFN-y and Inflammasome

Several studies reported a negative correlation between MDSCs and the response to ICIsB4I63I66] |eading to the
suggestion that MDCSs can be a negative predictive marker for ICI therapy®Z. A few case reports noted a

correlation between HPD development and the number of MDSCs in the peripheral blood and in the TME of
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patients(€8l89, Moreover, the recruitment of granulocytic MDSCs to the TME following ICI therapy, through the IFN-
y-dependent activation of the inflammasome pathway in cancer cells, has been reportedZ%. PD-L1 upregulation by
IFN-y after ICls and the consequent activation of the PD-L1 intrinsic signaling pathway in tumor cells trigger the
activation of NLR family pyrin domain containing 3 (NLRP3), which leads to the downstream activation of the heat-
shock proteins 70 (HSP70)/Toll-like receptor 4 (TLR4) signaling pathway and Wnt5a production. This signaling
cascade ultimately leads to C-X-C motif chemokine ligand 5 (CXCL5) release, resulting in chemokine-dependent
recruitment of polymorphonuclear-like MDSCsZ. PD-L1 triggers NLRP3 activation by repressing STAT3, which is
a transcription factor involved in IFN-cytotoxicity. Mutations in the intracytoplasmic DTSSK domain of PD-L1, which
is a conserved sequence that acts as a negative regulator of PD-L1 functions, lead to hyperactive PD-L1 molecules
in human tumors, enhancing the capacity of the PD-L1 intracellular pathway to interfere with STAT3 expression
and phosphorylation2. Thus, in patients carrying mutations in the intracytoplasmic domain of PD-L1, the
molecules of the inflammasome may be further augmented by PD-L1 upregulation after IFN-y secretion in
response to ICls, eventually leading to HPD. Interestingly, a mutational analysis performed on tumors after
pembrolizumab treatment highlighted the presence of missense or indel mutations in genes involved in the
negative regulation of NLRP3 activation and inflammasome pathway®¥, including the caspase recruitment domain
(CARDS8 and CARD11), protein flightless-1 homolog (FLII) and nuclear factor erythroid 2-related factor 2 (NFE2L2)
[LA72[73]174] - Moreover, hyperprogressive tumors show mutations in NOTCH1, which seems to be involved in
NLRP3 activation and inflammasome pathway SI6AZSIT6ITT |n addition, the mechanism of MDSC recruitment in
HPD may also be related to the impairment of effector T-cell activity, resulting in the expansion of Treg cells, the
inhibition of NK cells and the secretion of immunosuppressive cytokines’8l. On the basis of the above-reported
evidence, it can therefore be stated that IFN-y-mediated recruitment of MDSCs in the TME may be a relevant

aspect of HPD development.

2.2. IFN-y and IDO1

Paracrine Wnt5a signaling is also involved in DC upregulation and enzymatic activity of indoleamine 2,3-
dioxygenase (IDO1), promoting DC-mediated Treg differentiationl’289, |DO1 is a cytosolic enzyme that contributes
to immune regulation by inducing metabolic changes in the local microenvironment. The enzyme catalyzes the
rate-limiting step of tryptophan metabolism, which converts tryptophan (trp) into the downstream catabolite
kynurenine (kyn). IDO1 is physiologically expressed by professional antigen-presenting cells (APCs), as well as by
epithelial cells, the vascular endothelium and peripheral lymphoid organs, and acts as a peripheral IC, contributing
to host defense against infection, peripheral immune tolerance, inhibition of local inflammation and autoimmunity
(811[82] Tumor cells use IDO1 expression as a mechanism of immune escapel83B4E3 Trp depletion indeed results
in a blockade of T-cell protein synthesisB8IE7l while kyn and its derivatives induce PD-1 expression on activated T
cells, together with the differentiation of Treg cells and tolerogenic DCs through aryl hydrocarbon receptor (AhR)
activation(88IBAEARL  |n addition, IDO1 expression is induced, as is that of PD-L1, when some degree of
inflammation occurs in the tumor, e.g., the presence of proinflammatory mediators, such as IFN-y, as a mechanism
of adaptive resistance against infiltrating T cells288IR4 This aspect clearly has negative implications for ICI
therapy, since increased IDO1 activity may increase tumor-infiltrating Treg cells, decrease TILs and accelerate

tumor growth[23I8IB7IB8IRAN |y non-small-cell lung cancer (NSCLC) patients treated with nivolumab, serum kyn/trp
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ratio was higher in early progressors with intrinsic resistance to anti-PD-1 therapy. Moreover, patients with high
kyn/trp ratios showed a progression-free survival of three months, which is very similar to that of hyperprogressive
patients in a study by Champiat et al. 199101l Thjs evidence suggests that IDO1 induction by IFN-y after ICI
therapy may counteract the effectiveness of an otherwise beneficial treatment. Combination treatment with ICls
and IDOL1 inhibitors in preclinical studies has been observed to enhance the infiltration and proliferation of effector
T cells in the TME[Q2L03] However, despite encouraging clinical results in early phase trials[L04J[105I[106] " jn g
randomized phase Il study, patients with metastatic melanoma treated with both the IDO1 inhibitor epacadostat
and pembrolizumab, had no benefit from the combined therapy, in comparison to pembrolizumab monotherapy297,
This negative result may, however, be caused by limited preclinical data and either the incomplete inhibition of
IDO1 or the compensatory expression of other trp-degrading enzymes298l Further clinical studies are therefore

needed to understand whether this combined therapy may have therapeutic potential.

Interestingly, IDO1 upregulation is inversely correlated with p53199 whose expression can be suppressed by IDO1
via the c-Jun N-terminal kinase (JNK) pathway219. |t is notable that the downregulation of p53 has already been
suggested as a HPD mechanism in patients with mouse double minute homolog 2 (MDM2) amplification22!.
Moreover, IDO1 expression is modulated by transforming growth factor-beta (TGF-B) via the Fyn-dependent
phosphorylation of immunoreceptor tyrosine-based inhibition motifs (ITIMs) in IDO1, and the activation of the NF-
kB pathway, which lead to a tolerogenic phenotype in DCstl, TGF-B can also activate the JNK pathway through
TGF-B activated kinase 1 (TAK1) and c-Jun phosphorylationt12l113] |t is interesting to note that the TGF-B
signaling pathway has been found to be transcriptionally upregulated in HPD tumors following IC blockade, as
compared to treatment-naive tumors2. Therefore, HPD patients with IDO1-expressing tumors may present a
hyperactivated JNK pathway which may result in p53 suppression. Moreover, post-therapy HPD tumors have also
displayed transcriptional upregulation of PISK/AKT and MAPK/ERK pathways, and it has been shown that PI3K

and MAPK oncogenic mutations can favor constitutive IDO1 expression on tumor cells62I[114][115]

2.3. IFN-y and Activation-Induced Cell Death

A further hypothesis that involves IFN-y in HPD development, focuses on the differential immunological actions of
IC blockade that occur depending on tumor burden. The combination of anti-CTLA-4 and anti-PD-1 therapy in mice
with high tumor burden (HTB) leads to improved tumor control and to the generation of more activated antigen-
specific T cells, as compared to mice with low tumor burden (LTB), in which combination treatment has been
shown to compromise antitumor immune response, inducing the loss of antigen-specific T cells18. This finding
was supported by retrospective clinical data from metastatic melanoma patients who received either monotherapy
or combination therapy. Patients treated with dual IC blockade showed significantly lower response rates than
those treated with monotherapy in low disease settings, but not in higher disease settings. The detrimental effect of
combined therapy in the LTB state was associated with higher IFN-y production, which was responsible for tumor-
reactive CD8"* T-cell apoptosis via activation-induced cell death (AICD). AICD physiologically takes place in the
early CD4" and CD8" T-cell priming stage, and leads to cell apoptosis to prevent immune hyperactivation. IFN-y
signaling is the key factor in activating this process, together with IL-2117, The induction of IFN-y secretion after

dual-blockade treatments can promote the apoptosis of tumor-reactive CD8* T cells in the LTB setting, limiting the
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formation of effector memory antitumor responses. In the HTB state, prolonged antigen exposure may lead to T
cells with a markedly exhausted phenotype, which may be more prone to reinvigoration after IC blockade. By
contrast, in LTB or in the early tumor setting, short-term antigen exposure may be unable to induce a fully
exhausted phenotype in T cells. Therefore, the activation of T-cell-receptor signaling against tumor antigens, in
combination with dual IC blockade, may result in immune hyperactivation, triggering the AICD process. These
findings appear to indicate that the paradoxical effect of IFN-y in tumor response might derive from the differential
exhaustion status of T cells in response to ICls. Although the mechanisms underlying AICD have not yet been fully
understood, Fas seems to be the major death receptor responsible for triggering the AICD pathway in CD4* T
cellsl1 18 Moreover, STAT1 and caspase 8, which are activated by the IFN-y pathway, may be involved in the
processit7. The possible role of the activation of the AICD pathway by IFN-y in HPD is supported by a study in
which two hyperprogressive patients displayed depletion of the immune-cell populations involved in tumor
clearance, including monocytes, central memory CD4* T cells, NK cells and activated DCs82. In these patients,
anti-PD-1 therapy had probably induced an accelerated AICD process in the antitumor activating lymphocytes, as
suggested by the activation of apoptosis gene sets and the upregulation of marker genes in the bcl-2 pathway after
treatment. These studies suggest that, in some patients, ICI therapy may be responsible for excessive activation of

the immune response, which could trigger regulatory mechanisms and hinder therapeutic antitumor effects.

In conclusion, it may be suggested that IFN-y contributes to HPD onset in predisposed patients via the induction of
the inflammasome pathway and consequent MDSC recruitment, the induction of IDO1 activity, which may result in
the downregulation of p53 in tumor cells, and, finally, the activation of AICD, which leads to T-cell depletion (Figure
1).

Inflammasome pathway IDO1
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Figure 1. Proposed IFN-y-dependent mechanisms of hyperprogression. The release of IFN-y from CD8* T
cells after ICI therapy can activate the inflammasome pathway by upregulating PD-L1 expression on tumor cells
and activating NLRP3 signaling, resulting in immunosuppressive MDSC recruitment in the tumor
microenvironment. At the same time, IFN-y can induce IDO1 activity in tumor cells, which activates the IJNK
pathway, leading to p53 downregulation and tumor growth. Finally, the concomitant stimulation of tumor-specific
CD8* T cells by ICI therapy and T-cell-receptor (TCR) activation results in a hyperactivated immune environment in

which IFN-y triggers the activation-induced cell death (AICD) mechanism and T-cell Fas-mediated apoptosis.
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