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Cardiovascular diseases (CVD) are complex entities with heterogenous pathophysiologic mechanisms and
increased oxidative stress has been viewed as one of the potential common etiologies. A fine balance between the
presence of reactive oxygen species (ROS) and antioxidants is essential for the proper normal functioning of the
cell. A basal concentration of ROS is indispensable for the manifestation of cellular functions, whereas excessive
levels of ROS cause damage to cellular macromolecules such as DNA, lipids and proteins, eventually leading to
necrosis and apoptotic cell death. CVD is the main cause of death worldwide with several conditions being affected
by oxidative stress. Increased ROS lead to decreased nitric oxide availability and vasoconstriction, promoting
arterial hypertension. ROS also negatively influence myocardial calcium handling, causing arrhythmia, and
augment cardiac remodeling by inducing hypertrophic signaling and apoptosis. Finally, ROS have also been shown

to promote atherosclerotic plaque formation.

antioxidants oxidative stress nutraceuticals cardiovascular diseases

| 1. Introduction

A variety of cardiovascular diseases have been shown to be associated, at least partially, with an excess
production of reactive oxygen species (ROS) WLIBIAI ROS constitute both oxygen free radicals, such as
superoxide, hydroxyl radicals, and peroxyl radicals, as well as non-radicals, such as hydrogen peroxide,
hypochlorous acid, and ozone &. In most cell types, mitochondria are the main drivers of intracellular oxidant
production, while other relevant sources are nicotinamide adenine dinucleotide phosphate (NADPH) oxidases
(summarized as the NOX family of enzymes). Apart from that, numerous other enzymes such as xanthine oxidase,
nitric oxide synthase, cyclooxygenases, cytochrome P450 enzymes, and lipoxygenases as well as other cell
organelles, like the peroxisome and endoplasmic reticulum, contribute to intracellular ROS production (8. Proteins,
lipids and DNA are the primary cellular structures affected by ROS and reactive nitrogen species (RNS). The
generation of molecular oxygen in the form of ROS is a natural part of aerobic life. Indeed, basal levels of ROS are
essential for the manifestation of various cellular functions, such as signal transduction pathways, defense against
invading microorganisms, gene expression and the promotion of growth or death [, In spite of the crucial
relevance of redox reactions, dysregulation of oxidant signaling may cause or accelerate a host of pathological
conditions, such as the rate of aging. However, the body is equipped with protective measures against ROS via
enzymatic (e.g., superoxide dismutase (SOD), catalase (CAT), peroxiredoxin (Prx) and glutathione peroxidase
(GSH-Px)) as well as non-enzymatic compounds (e.g., tocopherol/vitamin E, beta-carotene, ascorbate, glutathione
(GSH), and nicotinamide (NAM)) 8. Newer research tools allow the investigation of redox signaling pathways in

adequate chemical detail, and it has become clear that redox processes are as important in biology as
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phosphorylation-dephosphorylation reactions, or central mechanisms responsible for controlling the genome and
epigenome, such as acetylation—deacetylation and methylation-demethylation . However, the analysis of redox
systems is challenging due to the substantial subcellular differences in redox potential and the short lifespan of
ROS. The discovery of numerous biomarkers of oxidative stress has facilitated the measurement of ROS; however,
their clinical use still needs to be validated given the vast diversity in oxidative stress between different diseases.
Genomics, epigenomics, and exposomics along with methodologies for redox imaging, redox proteomics, and
redox metabolomics, will improve our understanding of health and disease processes within entire biological
systems. Furthermore, the emerging big data and artificial intelligence era will provide us with new opportunities for

the development of oxidative stress knowledge bases and paves the way for a more personalized redox medicine
@

In 2016, =17.6 million deaths were attributed to cardiovascular diseases (CVD) globally, which amounted to an
increase of 14.5% from 2006 (28, CVD is currently the leading cause of death, and it claims more lives each year
than cancer and chronic lung disease combined. Coronary heart disease (CHD) represents the most common CVD
(201 |n the coming decades, with an aging population and increased incidence of obesity and diabetes, the burden
and medical costs of CVD are anticipated to significantly increase worldwide. Although significant efforts have been
made to enlighten pathophysiologic mechanisms governing the initiation and progression of CVD, still much work
has to be done [L[1213] As such, a better understanding of the biomolecular mechanisms and their clinical

consequences is urgently needed to reduce the burden of CVD, and this poses a serious challenge in medicine.

| 2. Endothelial Dysfunction in Cardiovascular Disease

The endothelium is a highly active monolayer that plays important roles in modulating vascular tone, cellular
adhesion, thromboresistance, smooth muscle cell proliferation, and vessel wall inflammation. This is achieved by
the production and release of several endothelium-derived relaxing factors, including vasodilator prostaglandins,
nitric oxide (NO), and endothelium-dependent hyperpolarization factors, as well as endothelium-derived contracting
factors. These vasoactive molecules that relax or constrict the vessel play a direct role in the balance of tissue
oxygen supply, long-term organ perfusion, remodeling of vascular structures, and metabolic demand by regulation
of vessel tone and diameter 14Il131 Endothelial cells dispose of an enzyme to fight vascular disease, namely
endothelial nitric oxide synthase (eNOS), which generates the vasoprotective molecule NO. This molecule diffuses
to the vascular smooth muscle cells, activates soluble guanylyl cyclase and increases cyclic guanosine
monophosphate (cGMP) [28. NO can also inhibit leukocyte adhesion to the vessel wall which represents an early
event in the development of atherosclerosis; therefore, NO may protect against the onset of atherogenesis.
Furthermore, NO is also involved in the inhibition of platelet aggregation and adhesion, both of which protect
smooth muscle cells from exposure to platelet-derived growth factors. These mechanisms can lead to fibrous
plague formation; therefore, NO also prevents a later step in atherogenesis. NO suppresses key processes in
vascular lesion formation and thus probably represents the most important antiatherogenic defense principle in the

vasculature [16].
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The pathomechanisms of endothelial dysfunction involve a diminished production and/or availability of NO, and a
disproportion between the endothelium-derived vasodilators and vasoconstrictors. Several traditional
cardiovascular risk factors are associated with alteration in endothelial function such as smoking, sedentary and
incorrect lifestyle, aging, hypercholesterolemia, arterial hypertension, hyperglycemia, and a family history of
premature atherosclerotic disease (Figure 1) 1718 This leads to chronic inflammation, resulting in an increase in
vasoconstrictor and prothrombotic products and diminished antithrombotic factors, in addition to abnormal
vasoreactivity, all of which elevate the risk of cardiovascular events. Indeed, endothelial dysfunction has also been
linked with obesity, elevated C-reactive protein, and chronic systemic infection (8. Oxidative stress and
inflammation are the main drivers of endothelial dysfunction. Several oxidative enzyme systems such as NADPH
oxidase, xanthine oxidase, cyclooxygenases, lipoxygenases, myeloperoxidases, cytochrome P450
monooxygenase, uncoupled NOS, and peroxidases lead to the inactivation of NO, which represents a critical
mechanism leading to endothelial dysfunction through an elevated level of superoxide anion (O,"") 19, Both
NADPH oxidase and eNOS uncoupling (i.e., the generation of ROS through eNOS as part of endothelial activation)
act as important sources of O, that give rise to vascular oxidative stress. Inhibition of NADPH oxidase has been
established as a key molecular mechanism leading to reduced arterial oxidative stress and normalization of
endothelial dysfunction in mice 29, Inflammation has been shown in many studies to play a role in endothelial
dysfunction that underlies the pathogenesis of CVD, obesity and type 2 diabetes mellitus. Both in rodents and
humans, elevated levels of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-a), interleukin-
lbeta (IL-1 B), interleukin-6 (IL-6), and interferon gamma (IFN-y) have been observed in age-related endothelial
dysfunction, mainly via the activation of the nuclear factor-kappa B (NF-kB) pathway [21[22]23]124][25](26] NF-kB is an
important transcription factor that regulates the gene expression of factors responsible for cell adhesion,
proliferation, inflammation, redox status, and tissue specific enzymes. It is expressed in all cell types and plays a
major role in the promotion of CVD through the transcription of pro-inflammatory, pro-adhesion and pro-oxidant
genes & The NF-kB pathway can be activated by a variety of stimuli including inflammatory cytokines, ROS,
lipids and mechanical forces acting on the vascular endothelial wall. Upon activation, transmembrane receptors are
stimulated which trigger intracellular signaling pathways, culminating in the activation of a kinase (IkK) mediated
phosphorylation and degradation of the inhibitor of NF-kB (IkB). Subsequently, the NF-kB heterodimer (p65/p50
subunits and, perhaps, p65, RelB, c-Rel, p50 and p52) translocates to the nucleus, where it binds to promoters of
gene targets. Several other pro-inflammatory molecules have been associated with endothelial dysfunction, such
as IL-6, TNF-a, monocyte chemoattractant protein 1 (MCP-1), receptor for advance glycation endproducts (RAGE)

and the pro-oxidant enzyme NADPH oxidase, and all predispose the vasculature to a “proatherogenic” phenotype
[28][29][30]
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Figure 1. Factors altering endothelial function and the consequences of endothelial dysfunction.

The endothelium has an endogenous capacity for repair, which occurs via two mechanisms. Lost and damaged
cells can be replaced by locally replicating mature endothelial cells. However, this repair mechanism is insufficient
in the presence of risk factors and loss of endothelial integrity would rapidly ensue. Circulating endothelial
progenitor cells represent an alternative mechanism for maintenance and repair of the endothelium; they are
recruited from the bone marrow. These cells circulate in the peripheral blood and have the ability to differentiate
into mature cells with endothelial characteristics 12l Indeed, factors that have been shown to have a positive
impact on endothelial function, such as exercise and statins, have also been shown to have a potent positive effect
on the mobilization of endothelial progenitor cells B2 The importance of the balance between exposure to risk
factors and the efficiency of endothelial repair has been underscored by the observation that subjects with
increased numbers of circulating endothelial progenitor cells have preserved endothelial function, despite exposure

to high levels of risk factors 23],

Endothelial therapy can be viewed as a two-step approach. The best treatment for diseases is preventing the
disease from occurring in the first place. Therefore, the first approach is disease prevention through increased
awareness and control of cardiovascular risk factors by nonpharmacological measures such as lifestyle
optimization (e.g., a healthy diet, physical exercise, maintaining a normal body weight). The second approach is
targeted (pharmacological) therapy directed at preserving or restoring the function of already impaired endothelial
cells in order to defer disease progression, promote disease stabilization, improve overall quality of life, reduce

disability and health costs, and ultimately increase survival B4, The aim of pharmacological treatment is
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reestablishing endothelial cell homeostasis (e.g., statin therapy to reduce low-density lipoprotein (LDL) cholesterol
levels; antidiabetics to reduce blood glucose levels; antihypertensives to normalize blood pressure; heart failure
therapy to amend myocardial and vasomotor function). Certain drugs may have some additional, endothelium-
protective off-target effects, such as statins by reducing inflammation and some angiotensin antagonists also
having metabolic (antidiabetic) effects 3238l Researchers are currently exploring new pathogenetic targets to
improve vascular dysfunction, including anti-inflammatory agents, therapies based on microRNAs and epigenetic
mechanisms. MicroRNAs (miRNAs) have been demonstrated to play a pivotal role during atherosclerotic plaque
formation. Indeed, it has been established that both miR-143 and miR-181a are upregulated in human
atherosclerotic plaques 78 Hydrogen peroxide (H,0,) treatment induces an increase in miR-181a levels, while
inhibition of miR-181a leads to increased resistance to H,O,, thus implying that miR-181a is involved in the
oxidative stress-induced endothelial cell dysfunction BZ. MiR-133a may represent an additional target for
preventing cardiovascular disease. Studies have demonstrated that the inhibition of aberrant miR-133a by
lovastatin prevents endothelial dysfunction by targeting GTP cyclohydrolase 1, a critical enzyme for eNOS
uncoupling in endothelial dysfunction B2, Finally, inhibition of miR-92a, an important regulator of endothelial
proliferation and angiogenesis after ischemia, leads to reduced endothelial inflammation, decreased plaque size,
and a more stable lesion phenotype 9. In recent years, emerging evidence has arisen that epigenetic pathways
might also play an important role in endothelial dysfunction. Resveratrol, a member of the polyphenol group, is
produced by several plants in response to injury and protects against pathological processes through the
suppression of elevated levels of proinflammatory cytokines in macrophages. Increased TNF-o-induced CD40
expression has been shown to modify the expression levels of specific adhesion molecules, thus boosting the
inflammatory response. Resveratrol treatment was able to attenuate the enhanced CD40 expression triggered by
TNF-a stimulation. Furthermore, resveratrol suppressed TNF-a-triggered ROS via potentiating the activity of sirtuin
1 (a histone deacetylase involved in suppressing inflammation), thus protecting cells from damage generated by

inflammatory factors 44,

3. Oxidative Stress and Inflammation in Cardiovascular
Diseases

The NOX (for NADPH OXidase) family NADPH oxidases are transmembrane proteins that transfer a single
electron from NADPH onto molecular oxygen, leading to the formation of superoxide. The physiological generation
of ROS usually occurs as a byproduct; however, this is not the case with NOX enzymes, as the generation of ROS
represents their primary biological function. In fact, the NOX-mediated release of ROS, also known as oxidative
burst, promotes the eradication of invading microorganisms in macrophages and neutrophils. The importance of
ROS in the host immune response is accentuated by the fact that people with an inherited deficiency in NOX2
develop chronic granulomatous disease (CGD) and are incapable of warding off common infections. The first
NADPH oxidase, NOX2, was found in phagocytes. This was followed by the discovery of other members of the
NOX family NADPH oxidases, which are not limited to phagocytes, but can de facto be found in virtually every
tissue 42, There is substantial evidence indicating that NOX enzymes play an essential role in the pathophysiology
of several CVD [43]144],
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Inflammation is an adaptive reaction to harmful stimuli and certain conditions, such as infection or tissue injury, and
comprises the regulated delivery of blood components (plasma and leukocytes) to the site of infection or injury. A
contained inflammatory response is generally thought to be beneficial (e.g., granting protection against infection),
but can become destructive if dysregulated (e.g., causing septic shock) 2!, We will subsequently discuss the roles
of oxidative stress and inflammation in the most prevalent CVD. The underlying oxidative and inflammatory
molecular mechanisms governing these CVD are summarized in Figure 2.
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Figure 2. Selected cardiovascular diseases and their underlying oxidative and inflammatory molecular
mechanisms. 8-OHdG: 8-hydroxy-2'-deoxyguanosine AF: atrial fibrillation; Ang II: angiotensin IlI; EC: endothelial
cells; ECM: extracellular matrix; ERK 1/2: extracellular signal-regulated kinase 1/2; ET-1: endothelin 1; H,0,.
hydrogen peroxide; JNK: c-Jun N-terminal kinase; MMP: matrix metalloproteinase; mtDNA: mitochondrial DNA;
NADPH: nicotinamide adenine dinucleotide phosphate; NO: nitric oxide; NYHA: New York Heart Association; O,™:
superoxide anion; ONOO™: peroxynitrite; OXLDL: oxidatively modified LDL; ROS: reactive oxygen species; RyR2:
type 2 ryanodine receptor; ScRs: scavenger receptors; SMC: smooth muscle cells; TLRs: toll-like receptors; U-II:
urotensin II; VCAM-1: vascular cell adhesion molecule-1; —: leads to; «: associated with. Please refer to the text

for more details.

4. Effects of Diet and Nutraceuticals on Oxidative Stress in
Cardiovascular Diseases

Based on the prevalence of CVD and the role of ROS in many pathologies, as specified above for the
cardiovascular system, there has long been interest in the application of naturally occurring antioxidants and the

development of chemical antioxidative agents to ease or prevent CVD. The subsequent chapter outlines available
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evidence regarding the effect of diet and nutraceuticals, i.e., the beneficial effects that substances contained in

foods have on human health 28!, on the prevention and therapy of oxidative stress in distinct CVD (Table 1).

Table 1. Diets and nutraceuticals investigated regarding their potential therapeutic antioxidant effects.

Study ) ) Studied ) ) o
Diet/Nutraceutical(s) ] Main Therapeutic Antioxidant Effects
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studies
and 8-iso-PGF2-11I formation and NOX2 regulation
| platelet ROS and NOX2 activation, | platelet production of
a8 Dark chocolate Human ]
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In vit | lipid peroxidation, | LDL oxidation, | formation of TBARS, |
n vitro,
HalR05Y ] ROS-induced DNA strand scissions 1 increase serum
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[55][56][57] Nuts i paraoxonase-1 and arylesterase activities | DNA strand
uman
(58] . breaks in lymphocytes and 8-hydroxydeoxyguanosine urine
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In vitro, ] ] o o
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Animal and 4 y
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Flavonoids human . . .
L 1 eNOS expression and GSH/GSSG ratio 1 flow-mediated
studies

dilation, | blood pressure | NOx, INOS expression and O,™
production | lipid peroxidation and protein oxidation
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| 59 Bénéfits and Harms of Antioxidants
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