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Particulate air pollution has aggravated cardiovascular and lung diseases. Accurate and constant air quality forecasting on

a local scale facilitates the control of air pollution and the design of effective strategies to limit air pollutant emissions.

 Accurate and constant air quality forecasting on a local scale facilitates the control of air pollution and the design of

effective strategies to limit air pollutant emissions. CAMS provides 4-day-ahead regional (EU) forecasts in a 10 km spatial

resolution, adding value to the Copernicus EO and delivering open-access consistent air quality forecasts. In this work, we

evaluate the CAMS PM forecasts at a local scale against in-situ measurements, spanning 2 years, obtained from a

network of stations located in an urban coastal Mediterranean city in Greece. Moreover, we investigate the potential of

modelling techniques to accurately forecast the spatiotemporal pattern of particulate pollution using only open data from

CAMS and calibrated low-cost sensors. Specifically, we compare the performance of the Analog Ensemble (AnEn)

technique and the Long Short-Term Memory (LSTM) network in forecasting PM2.5 and PM10 concentrations for the next

four days, at 6 h increments, at a station level. The results show an underestimation of PM2.5 and PM10 concentrations

by a factor of 2 in CAMS forecasts during winter, indicating a misrepresentation of anthropogenic particulate emissions

such as wood-burning, while overestimation is evident for the other seasons. Both AnEn and LSTM models provide bias-

calibrated forecasts and capture adequately the spatial and temporal variations of the ground-level observations reducing

the RMSE of CAMS by roughly 50% for PM2.5 and 60% for PM10. AnEn marginally outperforms the LSTM using annual

verification statistics. The most profound difference in the predictive skill of the models occurs in winter, when PM is

elevated, where AnEn is significantly more efficient. Moreover, the predictive skill of AnEn degrades more slowly as the

forecast interval increases. Both AnEn and LSTM techniques are proven to be reliable tools for air pollution forecasting,

and they could be used in other regions with small modifications.

Keywords: particulate matter (PM2.5 ; PM10) forecast ; analog ensemble (AnEn) ; long short-term memory (LSTM) ;
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1. Introduction

Air pollution is a global pivotal issue in the fields of health and environment, affecting at the same time both the economy

and social life. Expediting industrialization and urbanization triggered an increase in cardiovascular and lung diseases,

attributable to air pollution . Airborne particles with a diameter of 10 μm or less are included in air pollutants with adverse

effects on public health, especially in urban areas. Particulate matter (PM) consists of a complex mixture of particles with

major components sulfate, nitrates, ammonia, sodium chloride, black carbon, mineral dust and water . Both coarse

particulate matter (PM10) and fine particles (PM2.5), due to their diminutive size, can penetrate deeply into the respiratory

system, causing serious chronic health problems including airway irritation, asthma, irregular heart rate, abnormal lung

function . Long-term exposure to high levels of PM is quantitatively associated with increased mortality and lung

cancer . Fine particles are small and light, which allows them to remain in the atmosphere for longer periods of time;

they also have been associated with a 4 to 8% increase in the burden of cardiopulmonary diseases . The sources of

particulate matter (PM), in their majority, are anthropogenic, with the natural sources constituting a small portion of the

total concentration . Consequently, particle pollution in urban areas is significantly higher due to the accumulation of

primary sources of PM2.5 and PM10, including industrial and vehicle emissions, fuel oils and indoor activities .

In this context, to protect the quality of life from the devastating effects of elevated pollutant concentrations, the designing

of effective strategies and the redefining of limits concerning emissions produced by industrial sources and vehicle traffic

are considered imperative. Air quality forecasting is a preliminary step in establishing abatement measures leading to the

prevention and the control of air pollution. Accurate and constant estimation of air pollutant concentrations ensures regular

and direct information flow, facilitating reasonable decision-making and direct execution of the action plan. In this respect,

much effort has been made for the development of air quality forecasting models to provide a scientifically based planning

. Achieving early warning has the potential to limit environmental pollution, determining additional control requirements,

and developing new technologies and practical applications to reduce the levels of air pollutants. In addition, using all the
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information provided and with thorough directions given by the Civil Protection, vulnerable groups can limit their outdoor

activities on high-pollution days .

The Copernicus Atmosphere Monitoring Service (CAMS)  of the European Center for Medium-Range Weather

Forecasts (ECMWF) , which monitors the atmospheric composition, provides reliable and quality-controlled information

for immediate use. This open-access platform delivers forecasts about common air pollutants on a global scale. The air

quality forecasts are the median ensemble from the outputs of nine air quality models and are produced for the next four

days. CAMS simulates the dilution and dispersion of air pollutants that affect the atmosphere, contributing crucially to the

comprehension of its processes. However, uncertainties introduced by the input parameters, the initial and boundary

conditions, constitute defects . Further, the coarse resolution of CAMS limits its applicability mostly to non-urban

areas.

Statistical methods are often applied into the forecasts of a numerical model to improve its skill. Various post-processing

techniques (including analog-based, AI-based, SL-based) forecasting essentially the uncertainty involved in AQ models

manage to enhance their forecast skill .

Analog Ensemble is a technique that produces deterministic and probabilistic air pollution forecasts by using deterministic

numerical weather predictions (NWP) and their contemporary observations, combined with a statistical post-processing

method. It was proposed by Delle Monache et al.  and has been successfully generating predictions for air pollutants

. Likewise, in the analog-based methods, the prediction is based on previous times, which present similar conditions

to the current state of the atmosphere . The uncertainty of the current forecast is estimated, considering the

corresponding uncertainties of past similar forecasts.

Deep learning is a widespread method in air pollution prediction  because of its potential in handling non-linear data

structure and multivariate time series analysis problems. The vast amount of data used in air quality problems, generated

by various sources, can be analyzed effectively by artificial neural networks, suitable for big data processing and tackling

complex problems. The complex issue of air pollution prediction demands sequential data, covering a long time range,

and issued from the dynamic system of the atmosphere. To deal with problems of the same nature, long short-term

memory networks (LSTMs) were proposed . LSTM networks generate deterministic forecasts of particulate matter, as a

function of input lagged variables, trying to find patterns recognition in the past.

Data-driven models can generate forecasts on the basis of reliable measurements. Numerous sensor models are used to

monitor air quality in cities, with the low-cost sensors gaining popularity both for their potential to be installed in dense

distribution, and for their affordable operational cost. Their reliability is in dispute when compared with (high-quality

sensors) grade monitoring stations due to the data variability or lower accuracy. However, calibrating them with the

appropriate techniques can generate reliable data in increased spatial coverage .

In this study, we evaluate the CAMS PM forecasts at a local scale against in-situ measurements, spanning 2 years,

obtained from a dense network of calibrated low-cost air pollution stations located in an urban coastal Mediterranean city

in Greece. Then, we apply two essentially different statistical approaches into the operational CAMS forecasts to

investigate their predictive capacity to accurately map the pollution pattern at a local scale for different types of stations

(urban, suburban, rural). Specifically, AnEn and LSTM methods are trained with the 4-day-ahead operational forecasts of

PM10  and PM2.5  from CAMS as well as open data from ground-based observations for 2018 and tested with the

corresponding datasets of 2019.

2. Observed PM Concentrations

The mean monthly PM10 and PM2.5 concentrations at each station during 2018–2019 are illustrated in Figure 1. During

winter (DJF), the PM levels peak and exhibit the largest spread among stations. The higher atmospheric stability limits

pollutant re-circulation and each station is mostly affected by the nearby emission sources. This results in more elevated

concentrations at the urban stations compared to suburban stations. PM concentrations are generally constant from May

to September as well as between different station types during the same period. The magnitude and variability of PM

concentrations are generally consistent across the two years, with the only notable difference being the reduced PM

levels in January 2019 compared to January 2018. This can be attributed to the meteorological conditions in the study

area presented in  Section 2.1; the twofold increase in total precipitation and rainy days in January 2019 exhibits a

washing effect on PM concentrations.
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Figure 1. Monthly variations of the mean PM2.5 (left) and PM10 (right) concentrations in the eight monitoring stations

during 2018 (top row) and 2019 (bottom row). The thick lines represent the observed and modelled concentrations at

the CAMS scale (see text for explanation).

3. CAMS Evaluation

The comparison of the gridded 0.1° × 0.1° CAMS forecasts with the observations at specific locations is performed on

equal terms. Specifically, we make use of the cell de-clustering geostatistical approach to estimate the observed PM

concentration onto the CAMS grid cell scale. The 0.1° × 0.1° area around the central CAMS grid point (Figure 2) contains

six stations. Splitting the CAMS cell into 4 equal 0.05° × 0.05° boxes, we find either 1 (SE and SW) or 2 (NE and NW)

monitoring stations within each box. The observed PM concentration at the CAMS spatial scale is calculated from the

weighted sum of the sensor’s concentration, giving weight 0.25 to the stations located in the south and 0.125 to the north

stations.

Figure 1 presents the mean monthly PM levels of the central grid point of CAMS shown in Figure 2 against the weighted

mean value of the six stations found in its grid. A substantial underestimation occurs during the winter (DJF) while

overestimation is evident for the other months. The maximum difference between forecasts and observations is found in

January (MB < 0) and April (MB > 0). The most profound reason for this inconsistency by a factor of 2 in DJF is possibly

due to errors in the CAMS anthropogenic emissions and especially wood burning, which represents roughly 43% of

particulate emissions in the area during winter (Pandis S, personal communication). On the other side, the April

overestimation by a factor of ~3 in PM10 in both years is linked to occurred events of Sahara dust transport (17–19/4/18,

12/4/19, 24–28/4/19), not identifiable from the low-cost sensors.



Figure 2.  Spatial distribution of the eight air quality monitoring stations used in this study. Black squares denote the

CAMS grid points.

4. Development of AnEn and LSTM Models

LSTM and AnEn methods are employed to produce PM10 and PM2.5 forecasts for the next 90 h at six-hour increments,

for the eight air quality monitoring stations located in the urban area of Patras. The datasets of all the stations are

separated into two parts, one for training the models (2018) and the other for evaluating them (2019). In this section, we

present the implemented configuration of each algorithm issued during the training phase.

4.1. AnΕn

Given a forecast, the AnEn algorithm searches similar past forecasts in the training dataset, as described in Section 2.2.1.

The selection of the number of analogs and the combination of predictors contribute significantly to the optimal

configuration of the AnEn method. Those factors are determined by the leave-one-out cross-validation method in the

training dataset (2018) applied for each day. PM10  and PM2.5  are the target variables. The predictor variables for

PM10 (PM2.5) are four: the same variable provided from the CAMS forecast and three auxiliary variables, namely, the

CAMS forecast of PM2.5 (PM10), the Julian day and the day of week. Seven combinations are produced by the set of the

three auxiliary variables, which, with the addition of the AnEn that hasn’t any auxiliary variable, produce a total of eight

combinations. For each station, the number of analogs and the variable combination yielding the lowest RMSE between

the observed values and the analog ensemble predictions in the train period are identified. The same configuration will be

applied in the next section, in the ‘blind’ dataset of the validation period.

Table 2  displays the optimum configuration per station, i.e., the number of analogs and the combination of predictor

variables yielding the minimum RMSE. At most stations, more than 20 analogs are needed to derive the analog forecast

for PM2.5  while fewer members (on average 6 less) are required for PM10  forecasts. In producing PM10  predictions,

PM2.5  is used from all stations while the contrary is generally not true, occurring only at 25% of the stations. For both

pollutants, AnEn utilizes as input the Julian day at most stations (seven out of the eight) while WDAY was found important

at 2–3 stations only. Hence, the AnEn PM10 forecast relies mostly on three inputs (CAMS forecasts of PM10 and PM2.5,

Julian day) while the AnEn PM2.5  forecast has two dominant inputs (CAMS forecast of PM2.5, Julian day). This partly

explains the need for fewer analogs for PM10. Adjusting weights to the predictors does not led to better results because

they are proven statistically insignificant.

Table 2. The optimum configuration of the analog ensemble at each monitoring site with respect to the number of analogs

and the subset of auxiliary variables.

PM2.5 PM10

Station
Optimum
Number of
Analogs

PM10 JDAY WDAY RMSE
Optimum
Number of
Analogs

PM2.5 JDAY WDAY RMSE

Agia 24   X   4.8 18 X X   6.9

Agia Sofia 12 Χ Χ Χ 6.7 11 Χ Χ Χ 10

Kastelokampos 24   X   5.7 16 X X   8

Koukouli 30   X   7.5 22 X X   10.6

Platani 29   X X 3.1 24 X   X 4.8

Psila Alonia 21   Χ Χ 7.2 12 X Χ   9.9

Rio 27   Χ   4.8 24 X Χ   7

Univ of Patras 26 X     3.1 30 X X   4.4

Frequency (%)   25 88 38     100 88 25

4.2. LSTM

Achieving the best performance for the LSTM model is a complex and time-consuming procedure. It is not enough to

optimize the hyperparameters of the model; the best combination of them should also be found. In order to construct the

architecture of the LSTM network, hyperparameters like the number of hidden layers and nodes in each layer are used,



while epoch and batch size, optimizer, loss and activation function should also be employed. A range of values is tested

for adjusting each parameter. Through a grid search, numerous trials with all the possible parameter combinations are

conducted to result in the final network. As input variables, the same are used as those of AnEn, i.e., observations and

CAMS forecasts of PM10 and PM2.5, the Julian day and the day of week. The data for 2018 of each station are divided

into groups of four days, using the first three days of each group as a training set and the fourth day as a validation set to

tune the hyperparameters of the model.

The dataset needs preparation before introducing it to the LSTM network, including normalizing the input variables with a

range of 0–1 and transforming it suitably for a supervised learning problem. Investigating the correlation between the

current target value and its own historical lagged values through the partial autocorrelation (PACF) function, the higher

correlation occurred four steps back (t-24 h). Therefore, the LSTM network is trained with a time lag of four timesteps.

Using as input the prior four timesteps of predictors (at time t-24 h), the LSTM model is learning from them to produce PM

forecasts for each forecast lead time for the next four days.

Based on trial experiment runs, one LSTM layer is proven suitable for the network to avoid overfitting, Although the

number of 100 units in the hidden layer seems to be appropriate for all stations, a different network size s tested to

achieve the best result for each station. As a concern, the activation of this layer is selected between the functions of relu,

sigmoid, softmax and tanh, with the sigmoid function yielding to the least Mean Square Error. After the LSTM layer, two

dense layers are added; the first is a fully connected layer with 50 units that works efficiently to connect the neurons to

each layer, with the second dense layer acting as the output layer. The output of the model is one-dimensional and utilizes

sigmoid activation to produce better forecasts. The model is trained using the Adam gradient-based optimization

technique. The Adam optimizer compared with two other stochastic gradient descent algorithms, Stochastic Gradient

Descent (SGD) and RMSProp, achieves the minimum error with the lesser number of epochs. After the selection of the

optimizer, the number of epochs and batch size are determined, 50 and 76, respectively. For the validation loss, the

function must be minimized through optimization, where common choices are the RMSE and MAE. In this case, the

RMSE is proven to be a better option. Many of the mentioned results are in accordance with the findings reported in

pertinent studies on air pollution forecasting with LSTM models .

5. AnEn & LSTM Forecast Verification (Validation Phazse)

In this section, the optimal configuration of AnEn and LSTM identified during the training phase in the year 2018 (Section

3.3) is applied to the 2019 dataset to evaluate their forecast skill. The verification is carried out for each station separately,

covering different forecast lead times, seasons and extreme levels. Verification of CAMS forecasts pin-pointed to the

station locations are also used for comparison.

5.1. Time Series

Concurrent time series of PM predictions by CAMS, LSTM and AnEn techniques against ground-level observations are

produced at six-hour increments for all sites of the study.  Figure 3  illustrates the time-series plots of two stations of

different types, an urban traffic station (Psila Alonia) and a suburban background station (University of Patras), for a two-

week period of January and April 2019, respectively. Those months are selected because, as seen earlier, of the deviation

between observations and CAMS peaks during those months. As far as the urban traffic station is concerned (Figure 3a),

despite the tendency of CAMS to underestimate PM concentrations conspicuously in January, the AnEn is drastic in

correcting the CAMS forecasts towards the magnitude and variability of the measured values. The LSTM captures the

variations of the measured values; however, it underestimates the peaks, making it inferior to the AnEn in this type of

station. Regarding the background suburban station (Figure 3b), the CAMS model produces quite overestimated

forecasts during April. The application of the AnEn in the CAMS forecasts limits to a large extent their distance from the

observations. The LSTM, integrating antecedent useful information to the next output, accomplishes a good performance

even though it tends to overestimate the minimum. In summary, both the AnEn and the LSTM demonstrate a significant

potential to correct the magnitude and phasing of CAMS PM2.5  and PM10  predictions, with AnEn displaying higher

forecast skill at the occasional observed extreme PM concentrations.
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Figure 3. Six-hour time series of PM concentrations with the corresponding models’ predictions over the Patras Air sites

for each forecast lead time for a two-week period: (a) 17–31 January at Psila Alonia, (b) 8–22 April at University of Patras

for PM2.5 (left) and PM10 (right).

5.2. Degradation of Forecast Skill

The verification of the daily cycle of the models has been carried out for horizons up to 90 h ahead, at the eight air quality

monitoring stations. Figure 4 displays the normalized RMSE as a function of the forecast lead time from hour 0 to 90 for

the PM2.5 and PM10 levels. The improvements over CAMS are significant at all stations for each forecast lead time. The

AnEn generates better results than the LSTM method. The peak error in both approaches is observed at 18 h UTC due to

the elevated levels of PM at the specific evening rush time. Moreover, the degradation of the forecast skill as the forecast

interval increases is milder for the corrected schemes, being slowest for AnEn (0.015 increase in NRMSE per forecast

day) compared to LSTM (0.043 per day) and CAMS (0.079 per day).

Figure 4. Normalized RMSE of the prediction methods of (a) PM2.5 and (b) PM10 as a function of the forecast horizon for

the test period aggregated at the eight air monitoring stations.

5.3. Error Indices

Typical error metrics, such as MBE and RMSE, are calculated at each monitoring station in annual, seasonal and monthly

temporal scales to gain insight on the forecast skill of each model. On an annual scale, CAMS shows positive bias for

both pollutants, with the MBE of PM10 being roughly double compared to PM2.5 (Table 3). As illustrated in Figure 5, the

annual overestimation from CAMs is found for all seasons except for winter, when quite underestimated forecasts are

distinguishable. The annual biases of both approaches are smaller than 1 μg/m  in absolute terms when aggregated over

all stations, being reduced compared to CAMS by a factor of at least 3 (Table 3). The AnEn technique reduces the bias of

CAMS forecasts by approximately 65%, in absolute terms. On the annual scale, it generates predictions with a slight

overestimation, in the range 0.1 to 1.1 μg/m  for PM2.5 and 0.2 to 1.7 μg/m  for PM10. The bias reduction is consistent

across all seasons. In contrast to AnEn, the LSTM model exhibits a minor underestimation tendency ranging from −0.9 to

1.7 μg/m  for PM2.5 and −1.4 to 0.2 μg/m  for PM10, which demonstrates slightly underestimated concentrations with

small negative MBE values.
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Figure 5.  Seasonal bar plots of MB values between CAMS forecasts (blue), AnEn (red) and LSTM (green) against

observed values for (a) PM2.5 and (b) PM10 at each station.

Table 3. MBE of PM2.5 and PM10 for forecasts of CAMS, AnEn and LSTM at each station.

PM2.5 PM10

STATION CAMs AnEn LSTM CAMs AnEn LSTM

Agia 1.5 0.7 0.3 3.8 1.1 −0.1

Agia Sofia 1.7 1.1 −0.9 3.6 1.7 −1.4

Kastelokampos 1.4 0.1 0.1 3.9 0.2 0.2

Koukouli 0.6 1.0 −1.1 2.7 1.7 −0.5

Platani 4.6 0.4 1.7 8.2 0.6 −1.1

Psila Alonia 0.2 0.7 −0.8 2.9 1.6 −1.0

Rio 1.8 0.7 −0.1 3.7 1.3 −1.0

University of Patras 3.9 0.6 0.2 7.0 0.5 0.1

Average (absolute) 2.0 0.7 0.7 4.5 1.1 0.7

The performance of each model is also evaluated using RMSE, a widely used reliability factor where errors of different

signs do not compensate as in the case of MBE. As can be inferred from Table 4, neither method is clearly superior. Both

models show a gross annual RMSE value (averaged over all stations) lower by approximately 50% for PM2.5 and 60% for

PM10 with respect to CAMS. The best performance (~75% RMSE improvement) for both models is met at the suburban

background stations (University of Patras, Platani) and the worst (~50% RMSE improvement) is noticed at the urban

traffic stations (Koukouli, Psila Alonia). AnEn prevails over the LSTM method in urban traffic stations (high PM levels)

while the opposite is true at the background stations. According to the seasonal values of RMSE at each station, the AnEn

attains better results than LSTM during winter (Figure 6). The largest improvement of AnEn over CAMS forecasts is

observed in spring and summer and the minimum in autumn. Generally, in terms of RMSE, AnEn is proven more efficient

for predicting periods with high particulate air pollution levels, whereas the LSTM is marginally more successful, in

seasons with moderate emissions.



Figure 6. Seasonal bar plots of RMSE values between CAMS forecasts (blue), AnEn (red) and LSTM (green) against

observed values for (a) PM2.5 and (b) PM10 at each station.

Table 4. RMSE of PM2.5 and PM10 for forecasts of CAMS, AnEn and LSTM at each station.

PM2.5 PM10

Station CAMS AnEn LSTM CAMS AnEn LSTM

Agia 9.3 4.7 5.0 15.4 6.8 7.2

Agia Sofia 11.8 5.9 6.1 20.0 8.8 9.5

Kastelokampos 11.5 5.6 6.0 19.4 7.9 8.3

Koukouli 12.9 6.9 8.1 21.1 10.5 11.3

Platani 12.3 3.3 3.1 21.6 5.0 5.0

Psila Alonia 13.1 7.0 8.1 20.7 10.0 10.9

Rio 9.9 4.5 4.4 17.3 6.6 6.7

University of Patras 10.4 3.1 2.6 18.5 4.4 3.6

Average 11.4 5.1 5.4 19.3 7.5 7.8
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