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Cluster-based coordination polymers (CCPs) are constructed from metal coordination clusters that are bridged by
polytopic organic ligands forming multidimensional systems such as one-dimensional (1D) chains, two-dimensional
(2D) layers, and three-dimensional (3D) metal-organic frameworks. Structurally well-defined polynuclear
Mn(ILIIN/Fe(lll)-oxo pivalate and isobutyrate clusters recommend them-selves as extremely versatille building
blocks where their ancillary coordination ligands are sufficiently flexible to allow the formation of a wide variety of
1D, 2D and 3D CCPs.

cluster-based coordination polymer carboxylate

| 1. Introduction

Cluster-based coordination polymers (CCPs) have received significant attention over the past decade due to their
promising potential as multifunctional materials for technological and industrial applications LEIEIAIBIE Typically,
CCPs are constructed from metal coordination clusters that are bridged by polytopic organic ligands forming
multidimensional systems such as one-dimensional (1D) chains, two-dimensional (2D) layers and three-
dimensional (3D) metal—-organic frameworks (MOFs) [Z. Two synthetic pathways have been explored by synthetic
chemists for the fabrication of the CCPs. In formation reactions, one can utilize simple salts or presynthesized well-
defined polynuclear metal clusters, following Robson’s classical node (typically consisting of a single metal ion) and
spacer (polytopic coordination ligand) approach [& or Yaghi and O’Keeffe’s “secondary building units” (SBUs,
representing a rigid metal carboxylate cluster with external connectivity that mimics triangle, square, tetrahedral,
hexagonal or octahedral patterns) strategy 219, | ater, Zaworotko et al. developed a design strategy that exploits
metal—organic polyhedra as “supermolecular building blocks” (SBBs), which combine a greater range of scale
(nanometer scale) and high symmetry and, thus, can afford improved control over the topology of the resulting

coordination polymers 111,

To date, considerable efforts have been devoted to developing a range of CCPs by using rigid carboxylate clusters
of paramagnetic transition metals as building units that contain multiple metal ions linked by multiple coordination
ligands, especially for producing molecular magnetic arrays 2. In comparison to other typically employed
structural building blocks, polynuclear carboxylate-based clusters offer distinct advantages for engineering CCPs:
(i) they can afford specific control over a CCPs’ topology through precise adjusting the coordination environment of
metal ions and thus providing the easy accessibility of spacers to a vacant coordination site at the periphery of the
cluster, to which a separate cluster can be attached; (ii) ease in managing and fine-tuning their shape and size via

increasing or decreasing the nuclearity; (iii) and feasibility to vary their physical properties since their physical
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characteristics (magnetic, spectroscopic and redox behavior) can be determined and modified prior to network
formation &, Furthermore, the carboxylate ligands can be partially substituted, e.g., by redox-active inorganic
ligands such as magnetically functionalized polyoxoanions 2! or paramagnetic organic ligands 141816117 thys,
the final assemblies can reveal some additional properties and functions such as charge-state switching of
magnetic ground states and anisotropy. Such tailor-made multidimensional CCPs can be applied in numerous

important fields such as catalysis, gas storage, pharmaceuticals, etc. 18],

| 2. Oxo-Trinuclear Mn/Fe-Based CCPs

Trinuclear oxo-centered carboxylate coordination clusters of general composition [M3(p3-O)(0,CR)g(L)s]™0 (where
L = a neutral terminal ligand) are the most frequently used building blocks in the construction of CCPs. For
assembling 1D oxo-trinuclear Mn/Fe CCPs, several synthetic strategies have been explored, e.g., using simple
soluble metal salts or well-known pre-designed “basic carboxylate”, e.g., P3-0x0 trinuclear Mn/Fe carboxylate
clusters. The combination of these starting materials with organic ligands, usually in “one-pot” syntheses at
temperatures starting from room temperature and up to solvothermal conditions in different solvents, gave the
expected CCPs. The first 1D CCP, [Mn3O(ac),(Hac)],, which is composed of [Mns(u3-O)(ac)s(Hac)] acetate
clusters interlinked by acetate bridges, was reported by Hessel and Romers in 1969 19, whereas Rentschler and
Albores synthesized the first 1D CCP composed of [Fes(u3-O)(piv)g(H,O)]pivalate clusters interlinked by
dicyanamide (dca) bridges in 2008, [FezO(piv)g(H,0)(dca)], (where Hpiv = pivalic acid) 22,

Cronin, Kogerler et al. [21 suggested an effective route to assembling 1D CCPs through metal building block linkers
in 2006. A helical {[(FezO(aa)g(H-0))(M0O,)(Fez0(aa)g(H-0),)]-2(MeCN)-H,0}, CCP (where Haa = acrylic acid)
has been synthesized by linking the [Fe;O(aa)g(H,0)s]* cations with [MoO,]?~ dianions derived from
(BuyN),[M0gO14] in MeCN. As an extension, Bu et al. 22 in 2015, introduced [M(H,0),(fa),]?~ formate building
block linkers for connecting pz-oxo  trinuclear neutral [FesO(fa);] formate  clusters into
{(NH,),[Fe;0(fa)7],[M(H,0),(fa),]}, CCPs (where Hfa = formic acid; M"" = Fe; Mn; Mg) with the formation of anionic
double-strained chains.

The family of 1D Mn and Fe pivalate or isobutyrate CCPs (Table 1) has been generated by using simple metal
carboxylates or employing pre-designed oxo-trinuclear building blocks in reactions 2324, Thus, mixing a hot
ethanol solution of hexamethylenetetramine (hmta) with Mn' isobutyrate in tetrahydrofuran yields the chain
coordination polymer {[Mn30(is)s(hmta),]-EtOH}, (where His = isobutyric acid) (1) [22l. This CCP comprises neutral
mixed-valent ps-oxo trinuclear [Mn"Mn"",O(is)g] clusters bridged by hmta into a linear 1D chain as shown in Figure
1. To model its magnetic behavior, an approximation considered two trimers coupled through Mn'" and Mn'" ions
(the Mn--Mn distances between clusters via hmta linkers are equal to 6.310 A). For 1, the authors reported
significant antiferromagnetic intracluster interactions between Mn spin centers with 2J; = +32.5 K and 2J, = -16.8

K, whereas the intercluster interactions through hmta spacers were found to be weakly ferromagnetic.
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Figure 1. A linear 1D chain in {{MnzO(is)s(hmta),]-EtOH}, (1) CCP [22. H atoms and solvent (EtOH) molecules are

omitted for clarity. Color codes: C, gray; N, blue; O red sticks. C atoms in carboxylates are shown as black sticks,

and Mn atoms are shown as magenta coordination polyhedra.

Table 1. Cluster-based coordination polymers (CCPs) built up from Fe/Mn-oxo pivalates and isobutyrates.

Oxo Building

Code Formulae Block Linker ! Dimensionality Refs
1 {IMn30(is)s(hmta),]-EtOH} {Mn"",;Mn''0} hmta 1D 123
2 {[FeaMnO(piv)g(hmta)2]-0.5(MeCN)}, {Fe'',Mn'"0} hmta 1D (24]
3 {[FeaMnO(piv)s(hmta)y]-Hpiv-n-hexane}, {Fe'',Mn''0} hmta 1D (24]
4 {[Fe2MnO(piv)s(hmta)y 5] toluene}n {Fe',Mn''O} hmta 2D 122]
S LI
6 [Fe2CoO(piv)6(bpe)o s(py2)ls {Fe'";Co'0} s 3D 25
7 [Mn4O2(is)s(bpm)(EtOH)4]n {Mn";Mn';0,} bpm 1D =
8 [Fe4Ox(piv)s(hmta)]n {Fel,0,} hmta 1D 126]
9 {[MngO2(piv)10(Hpiv)(EtOH)(na)]-EtOH-H-0}, {Mn"",Mn',0,} na 1D (27
10 [MneO2(piv)10(Hpiv)2(en)]n {Mn'',Mmn",0,} en 1D (28]

11 {[MngeO2(is)10(pyz)s]-2(H20)}n {Mn',Mn",0,} pyz 1D [27]
12 [MngO2(is)10(pyz)(MeOH):], {Mn",Mn",0,} pyz 1D (8]
13 {IMngO2(is)10(pyz)1.5(H20)]-0.5(H20)}n {Mn,Mn',0,} pyz 1D (28]
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Code Formulae R L9 Linker ! Dimensionality Refs
Block

14 {[MngO4(is);o(His)(EtOH)(bpea)]-His};, Mn"">Mn'",0,} bpea 1D [27]
15 [FegO2(0,CH,)(piv)12(diox)], {Fe''s0,} diox 1D [29]

- , Il 44'- [29]
16 [FeeO02(02CH2)(piv)12(4,4"-bpy)]n {Fe"eOo} S 1D
17 [MNngO,(piv)1o(ina)sl, {Mn";Mn"40,} ina 2D (29
18 {[MngO(piv);g(adt-4),]-2(thfH)}, Mn"">Mn'",0,} adt-4 2D (29
19 {[MngO,(is)1o(adt-4),]-thf-3(EtOH)}, {Mn"">Mn"",0,} adt-4 2D [20]

! hmta = hexamethylenetetramine; 4,4'-bpy = 4,4"-bipyridine; bpe = 1,2'-bis(4-pyridyl)ethylene; pyz = pyrazine; bpm
= 2,2'-bipyrimidine; na = nicotinamide; en = ethyl nicotinate; bpea = 1,2-bis(4-pyridiyl)ethane; diox = 1,4-dioxane;

ina = isonicotinamide; adt-4 = aldrithiol.

Combining the different pre-designed ps-oxo trinuclear pivalate complexes such as [Fe3zO(piv)s(H20)3]piv-2(piv)
and [Mn3O(piv)s(hmta)s]-n-PrOH in one-pot reactions with the same spacer (hmta) lead to the formation of
heteronuclear Fe/Mn-oxo 1D CCPs 24, The solvothermal reaction of these precursors in MeCN at 120 °C for 4 h
gave a heterometallic chain polymer {[FeoMnO(piv)s(hmta)2]-0.5(MeCN)}, (2), while refluxing in n-hexane resulted
in the solvated heterometallic chain polymer {[FesMnO(piv)g(hmta)z]-Hpiv-n-hexane}, (3). Magnetic studies of 2
and 3 indicated dominant antiferromagnetic interactions between the metal centers with significant intercluster
interaction through hmta spacer with the following exchange parameters: Jun'—re'" = =17.4 cm™ and Jge'"'_ge"' =
-43.7 cm™ for 2; and Jun'_re" = -23.8 cm™ and Jr"_re"" = -53.4 cm™ for 3. All intercluster exchange
interactions were modeled using a molecular field model approximation to give Ams = =0.219 mol cm™ (2) and Amf =

-0.096 mol cm ™2 (3) [24],

In comparison to Baca and Kdgerler's approach, Kolotilov et al. [31)[32][33][34] employed already preformed oxo-
centered heterometallic trinuclear [FeaMO(piv)s(Hpiv)s] (M = Co, Ni) pivalates to isolate a series of heterometallic
1D CCPs formulated as {[Fe2CoO(piv)s(bpe)]-0.5(bpe)}n, [FeaNiO(piv)s(bpp)(dmf)]n, {[Fe2NiO(piv)s(pnp)
(dmso)]-2.5(dmso)}n, [Fe2NiO(piv)e(pnp)(H20)]n, {[(Fe2NiO(piv)e)s(Et-4-ppp)s]-3(def)}n, and [FeaNiO(piv)s(bpt)1.s]n
(where bpe = 1,2-bis(4-pyridyl)ethylene, bpp = 1,3-bis(4-pyridyl)propane, pnp = 2,6-bis(4-pyridyl)-4-(1-
naphtyl)pyridine, Et-4-ppp = 4-(N,N-diethylamino)phenyl-bis-2,6-(4-pyridyl)pyridine, bpt = 3,6-bis(3-pyridyl)-1,2,4,5-

tetrazine).

The presence of three potential donor metal sites in the oxo-centered trinuclear carboxylate species makes this
building block very attractive and useful for the construction of 2D CCPs. The first homometallic 2D
{[Fe30(ac)s(H20)s][FesO(ac)7.sl2-7(H20)}n cluster-based layer has been prepared by Long and coworkers 22 in

2007 from the reaction of a trinuclear iron acetate, [FezO(ac)s(H20)3]CI-6H20, FeCls-4H,0 and sodium acetate in
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MeCN/water solution at room temperature in 4 months. The main feature of it is the formation of the “star” anionic
layer of acetate-bridged [FezO(ac)g]* clusters that contain in its channels cationic guest-trimer [Fe;O(ac)g(H,0)3]*
clusters. In 2009, Pavlishchuk et al. B8 reacted simple salt precursors, namely iron(lll) nitrate nonahydrate and
manganese(ll) nitrate hexahydrate, with formic acid under heating to isolate the first heterometallic 2D CCP
{[Fe3O(fa)s][Mn(fa)3(H,0)3]-3.5(Hfa)},. This compound consists of trinuclear [FezO(fa)s]* units linked by

mononuclear [Mn(fa)3(H,0)3]™ bridges into 2D honeycomb layers.

By refluxing the presynthesized pivalate complex compounds [Mn3O(piv)g(hmta)s]-n-PrOH  and
[Fe3O(piv)g(Ho0)s]piv-2(Hpiv) in a hot toluene solution for 6 h, the new 2D heterometallic coordination polymer
{[Fe,MnO(piv)g(hmta), s]-toluene}, (4) can be prepared 24, In contrast to the above-mentioned 1D CCPs (1-3), in
4 hmta ligands, connect neighboring heterometallic {[Fe,Mn(u3-O)(piv)g] pivalate clusters into a 2D corrugated
layer as shown in Figure 2. The formed framework accommodates guest toluene molecules. In 4, the exchange
interactions between Mn'" and Fe'!'" were found to be antiferromagnetic (Jy,''_re" = =13.3 cm™; Je g = -35.4
cm™1), with significant intercluster interactions through hmta (A, = —0.051 mol cm™3). A series of 2D heterometallic
pivalate CCPs built from [Fe,MO(piv)g] (M" = Co, Ni) clusters bridged by different polydentate polypyridyl-type
linkers has also been reported by other groups [B2[38137][38]

Figure 2. A heterometallic 2D layer in {{[Fe,MnO(piv)g(hmta), s]-toluene}, (4) CCP (24, H atoms and solvent toluene
molecules are omitted for clarity. Color codes: C, gray; N, blue; O red sticks and Fe/Mn atoms are shown as

brown/magenta coordination polyhedra. C atoms in carboxylates are shown as black sticks.

In 2014, Baca and Kogerler et al. [22 reported the first 3D cluster-based coordination polymers, {[Fe3O(piv)g(4,4'"-
bpy)1 5](OH)-0.75(dcm)-8(H,0)},, (5) and [Fe,CoO(piv)g(bpe)q 5(py2)], (6). Relative to the 1D and 2D CCPs, 3D
structures based on Mn/Fe trinuclear oxo-clusters are rare: up to now, only three compounds were reported [22139],
CCPs 5 and 6 consist of pz-oxo-centered cationic homometallic [Fe''5(us-O)(piv)e]t or neutral heterometallic
[Fe",Co''(u3-0)(piv)g] coordination clusters bridged by different N,N'-donor ligands: 4,4'-bipyridine (4,4'-bpy) in
case of 5, and 1,2'-bis(4-pyridyl)ethylene (bpe) and pyrazine (pyz) in case of 6. They were prepared in a “one-pot”

solvothermal reaction in dichloromethane from [FegO,(OH)»(piv);5] and organic spacers, and, additionally, cobalt(ll)
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pivalate was added in 6. It is worth noting that the mutual arrangement of three-connected [M3(u3-O)(piv)g] nodes
linked by a linear spacer determines the topology of the final CCPs. Here, neighboring ps-0xo trinuclear clusters
are mutually perpendicular, and the pair of clusters may be regarded as a pseudo-tetrahedral four-connected
binodal building block, and as a result, 3D porous networks are formed. A 6-fold interpenetrated network with rare
(8.3)-c (etc) topology can be observed in 5, and a three-fold interpenetrated network with (10.3)-b (ths) topology in
6 (Figure 3). Magnetic studies of 5 and 6 point to both ferro- and antiferromagnetic intra- and intercluster exchange
interactions between the isotropic Fe'' and/or the strongly anisotropic (octahedrally coordinated) Co' spin centers.
In particular, the x,,T value of 7.54 cm? K mol™ at 290 K, significantly smaller than the expected spin-only value of
13.1 cm® K mol™ for three isolated S = 5/2 centers (g, = 2.0) for 5, indicates dominant antiferromagnetic
exchange interactions mediated by the central p3-O within {Fe(u3-O)} unit (J; = -0.1 cm™ and J, = -27.0 cm™)
and the 4,4'-bpy bridges (A, = —0.609 mol cm™3, the Fe---Fe distances via 4,4"-bpy are equal to 11.347 and 11.380
A). For 6, both contributions of the orbital momentum of Co'' center in {Fe,Co} unit and intracluster (ferromagnetic)
and intercluster (ferromagnetic) coupling within {Fe,Co} triangular unit and between them have been considered
via the magnetochemical computational framework CONDON 941 The exchange interaction parameters are
Joo're" = +55.0 cm™, Je" "' = =122.0 em™ and A, = +1.163 mol cm™ (through the pyz ligand the M:-M
distances are 7.096 and 7.142 A, and through the bpe spacer these distances equal 13.603 A). Subsequently, a
3D CCP, {[NH4],[FeqO3(ac),3(H,0)]},, with triangular [Fes(uz-O)(ac)g]™ cations and acetate as linkers between the
units has been reported by Bu et al. B2, Its structure exhibits a 4-fold interpenetrating 3D network with a rare eta-

¢4 net topology.

o

(10.3)-b (ths)

Figure 3. 3D layers in {[Fe3O(piv)g(4,4'-bpy); 5](OH)-0.75(dcm)-8(H,0)}, (5) and [Fe,CoO(piv)g(bpe)q s(py2z)], (6)
CCPs 23, H atoms and CMe; groups are omitted for clarity. Color codes: Fe, brown; Co, green coordination
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polyhedra; C, gray sticks; N, blue; O red spheres. C atoms in carboxylates are shown as black sticks.
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