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Drought stress restricts plant growth and development by altering metabolic activity and biological functions. However,

plants have evolved several cellular and molecular mechanisms to overcome drought stress. Drought tolerance is a

multiplex trait involving the activation of signaling mechanisms and differentially expressed molecular responses. Broadly,

drought tolerance comprises two steps: stress sensing/signaling and activation of various parallel stress responses

(including physiological, molecular, and biochemical mechanisms) in plants. At the cellular level, drought induces oxidative

stress by overproduction of reactive oxygen species (ROS), ultimately causing the cell membrane to rupture and

stimulating various stress signaling pathways (ROS, mitogen-activated-protein-kinase, Ca2+, and hormone-mediated

signaling). Drought-induced transcription factors activation and abscisic acid concentration co-ordinate the stress

signaling and responses in cotton. The key responses against drought stress, are root development, stomatal closure,

photosynthesis, hormone production, and ROS scavenging. The genetic basis, quantitative trait loci and genes of cotton

drought tolerance are presented as examples of genetic resources in plants. Sustainable genetic improvements could be

achieved through functional genomic approaches and genome modification techniques such as the CRISPR/Cas9 system

aid the characterization of genes, sorted out from stress-related candidate single nucleotide polymorphisms, quantitative

trait loci, and genes. Exploration of the genetic basis for superior candidate genes linked to stress physiology can be

facilitated by integrated functional genomic approaches. We propose a third-generation sequencing approach coupled

with genome-wide studies and functional genomic tools, including a comparative sequenced data (transcriptomics,

proteomics, and epigenomic) analysis, which offer a platform to identify and characterize novel genes. This will provide

information for better understanding the complex stress cellular biology of plants.
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1. Introduction

Global warming and climate change adversely affect agricultural production. Erosion of genetic diversity for drought

tolerance in major crops is a threat to food security. Abiotic stresses are major threats, and collectively led to 73% decline

in cotton production worldwide . Drought refers to low water availability for the long-period of time, and affects crop

production . Drought tolerance is a complex trait involving multiple genes associated with cellular signaling pathways

which modify several physio-morphological, and molecular responses. Plant cell membranes perceive stress signals and

stimulate various self-activated and hormone-dependent signaling mechanisms . Mitogen-activated-protein-kinase

(MAPK) networks are involved in stress signaling and activate several stress-responsive proteins . In stress signaling

pathways, calcium (Ca ) is a common second messenger, controls many physiological processes in plants. The

cytoplasmic Ca  concentration varies in response to drought stress and various hormones such as abscisic acid (ABA),

jasmonic acid (JA), and ethylene . Under high concentrations, ABA interacts with SnRK2 proteins, which subsequently

initiate molecular and physiological responses to drought stress . Jasmonic acid (JA) and its derivatives also activate

signaling pathways similar to ABA . Overproduction of reactive oxygen species (ROS) also triggers defense

mechanisms and excessive amounts of ROS scavenged by enzymatic and non-enzymatic defense machinery in plants

.

Following the successful transduction of stress signals, plants actively adopt drought recovery mechanisms. Tolerant

plants are able to resume growth and overcome the growth deficit induced by drought. Cotton has developed numerous

morpho-physiological approaches, such as photosynthetic response , osmotic adjustment, stomatal regulation, low leaf

water loss, high relative water contents (RWC), and enlarged tap roots . These features contribute to drought tolerance

through a multigenic effect. Genetic statistics and improvements of physio-morphological characters are important to

reduce the effects of drought. Alterations in physio-morphological and biochemical traits have vital roles in maintaining

favorable water balance in plant cells and tissues.
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Genome modification technologies and transgenic approaches have been employed to develop drought-tolerant crops

overexpressing transgenes that are important for plant physiology. Targeted genome editing with the CRISPR/Cas9

system has been utilized to modify the genome to obtain more stable and heritable mutations . Genome-wide studies

have been performed to explore stress-related candidate regions and genes for drought tolerance. Various drought-

related quantitative trait loci (QTL) clusters and hotspots have been mapped in cotton. Several QTLs for abiotic stress,

especially drought, have been identified using single nucleotide polymorphisms (SNPs) in genome-wide association

studies (GWAS). Meta-analyses can be performed to identify common QTLs for drought-related traits . Whole genome

sequencing and re-sequencing of allotetraploid and diploid cotton species provide information in the biologically active

states of DNA . Fine- and high-density genetic maps, transcript abundance, epigenetic modifications, and SNP array

platforms can also be used, as reported for other model plants (rice and Arabidopsis). These approaches serve as a

platform for gene mapping, isolation, and cloning for drought tolerance. Moreover, the identification of novel genes can be

facilitated by high-throughput marker development for stress tolerance in plants.

This review focuses on the cellular and molecular signaling networks and drought coping adaptations in plants to

overcome the impact of drought stress. The use of functional genomics to overcome drought stress is also discussed.

Furthermore, this review provides an overview of the genetic basis of drought tolerance in cotton, with a focus on QTLs

and candidate abiotic stress tolerance genes in cotton, which might be employed for novel cotton breeding in the future.

2. Role of TFs in Drought Stress Signaling Pathways

TFs are the principal regulatory elements for many genes involved in environmental stress responses. TFs have vital roles

in signaling pathways, from signal reception to the expression of genes related to drought stress in plants. Genes contain

cis-acting components in their promoter regions, which serve as binding sites for TFs to regulate gene expression in

signal transduction pathways. Signaling cascades in networks responsive to drought stress are activated via TFs that

work together to induce drought tolerance . Approximately, 1500 TFs are involved in the expression of stress related

genes in Arabidopsis . Several transcription factor families like MYB, WRKY, ERF, NAC, and bZIP have been

characterized and shown to be useful tools for enhancing drought tolerance in plants. In recent studies, TFs involved in

stress tolerance were identified in cotton and Arabidopsis (Table 1). Overexpression of GhABF2 in cotton enhanced the

activities of catalase (CAT) and superoxide dismutase (SOD), and improved yield in transgenic plants . Another TF

related to R2R3-type MYB, GbMYB5, responded positively to drought stress . Ectopic expression of the GhWRKY41
gene in tobacco plants led to increased activity of antioxidant enzymes, lower MDA content, increased stomatal closure,

and upregulation of antioxidant-related genes . In Gossypium barbadense, a R2R3-type GbMYB5 TF gene enhanced

drought tolerance in transgenic tobacco and cotton. These results suggest the involvement of GbMYB5 in adaptive

drought stress responses . GhWRKY59 is an important TF that ensures drought tolerance in cotton (Figure 1) . In

Upland Cotton, a NAM domain gene termed GhNAC79, improves drought tolerance, and also responds to JA and

ethylene treatments. Additionally, its overexpression improved stress tolerance in Arabidopsis and cotton .

Table 1. Key genes involved in abiotic stress signaling in cotton.

Gene Type Phenotypic Effect/Function Reference

GhHUB2
Histone H2B

monoubiquitinatin E3
ligase encoding gene

Drought tolerance through increased soluble
sugar, proline, and leaf relative water contents

GrMAPKKK and
GhMAPKKK MAPK gene family Drought and salt responsive

GhMAP3K1, GhMKK4, and
GhMPK6 MAPK signaling gene Regulates the drought stress response by

interacting with GhWRKY59–GhDREB2

GhMKK3 MAPK signaling gene Enhanced drought tolerance

GhMAP3K40 MAPK signaling gene Salt and drought stress tolerance at the
germination stage

GhMPK4 MAPK signaling gene Increased sensitivity to ABA, salt, and drought

GhMPK17 MAPK signaling gene Osmotic and salt stress tolerance

GbMPK3 MAPK signaling gene Enhanced oxidative and drought stress tolerance

GhMPK6a MAPK signaling gene Drought and salinity
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Gene Type Phenotypic Effect/Function Reference

GhMKK1 MAPK signaling gene Drought and salinity

GhMKK5 MAPK signaling gene Drought and salinity

GhMPK2 MAPK signaling gene Drought and salinity

GbRLK Receptor-like kinase Drought and salinity

GaHDG11
(HD-ZIP) Transcription factor Drought and heat stress

GhNAC79 Transcription factor Improves resistance to drought stress

GhERF38 Transcription factor Drought, abscisic acid, and salinity

GhERF2, GhERF3, GhERF6 Transcription factor Drought, salt, ethylene, and abscisic acid

GhWRKY59 Transcription factor Activates MAPK signaling gene under drought

GhWRKY25 Transcription factor Drought and salinity

GhABF2 (bZIP) Transcription factor Enhances the activities of CAT and SOD, regulates
gene expression related to ABA

GhNAC2 Transcription factor Longer roots, and enhanced salt and drought
tolerance

GhCBF3, GhAREB1, and
GhAREB2 ABA-induced gene

Small stomatal aperture, enhanced drought- and
high salinity-tolerance via the ABA signaling

pathway

GhNAC7-GhNAC13 Transcription factor Cold, abscisic acid, drought, and salinity

GbMYB5 Transcription factor
Reduced water loss trough stomatal conductance,

and increased proline content and antioxidant
enzymes

GhWRKY41 Transcription factor
Lower malondialdehyde content, higher

antioxidant activity, and induced stomatal
conductance

GhWRKY17 Transcription factor Increases sensitivity to ABA and drought stress

GhNAC8-GhNAC17 Transcription factor Drought, salinity, cold, and ABA

GhNAC1-GhNAC6 Transcription factor Drought, cold, salinity, and ABA

GhDREB Transcription factor Drought, cold, and salinity

GhDREB1 Transcription factor Drought, cold, and salinity

GhDBP2 Transcription factor Drought, cold, and ABA

GhERF1 Transcription factor ABA production and drought stress signaling
regulation

GhERF4 Transcription factor ABA production and drought stress signaling
regulation

GhDREB1L Transcription factor Drought, cold, and salinity

GhPYL9–11A ABA receptor gene ABA receptor that mediates the response to
drought stress

GhSnRK2 Involved in ABA signaling Drought, salinity, cold, and ABA

GhCDPK35, GhCDPK28,
GhCDPK16, GhCDPK14,

GhCDPK11 and GhCDPK3
Ca -activated gene Drought and salinity stress responsive

GhCIPK6 Ca -activated gene Increased drought, salinity, and ABA stress
tolerance

GhD12G207 CDK gene family
Increased concentration of antioxidant enzymes

(POD, SOD, and CAT), cell membrane stability, and
chlorophyll content under drought and salt stress
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Gene Type Phenotypic Effect/Function Reference

GaMYB62L Transcription factor Increased chlorophyll and proline contents, higher
germination rate under drought salt stress

GhTPS11 Functional gene Drought, heat, salinity, ABA, and gibberellin acid

GhAVP1 Functional gene Drought and salinity tolerance

Figure 1. Drought-induced, ABA-dependent, ABA-independent MAPK signaling, and interaction between ABA, ROS, and

MAPK signaling under drought stress in plants. ABA-regulates various MAPKs in cotton and Arabidopsis. ABA promotes

drought sensing and signaling in plants. The different cascades are represented by different color schemes in the figure.

Solid arrow lines denote established signaling mechanisms, while dashed arrow lines denote unestablished signaling

pathways. ABA-activated SnRK2s trigger and phosphorylate downstream targets, such as respiratory burst oxidase

homolog (RBOH) and various MAPKs. Activation of RBOH induces ROS production. ROS signaling and ABA signaling

may overlap with MAPK factors, to interact and regulate drought tolerance. MAP3K17/18-MKK3-MPK1/2/7/14 is an ABA-

induced complete MAPK cascade involved in stomatal signaling, senescence, and drought tolerance mechanisms in

Arabidopsis. In addition, MKK1 activates MPK6 to positively regulate CATALASE1 (CAT1) for ROS abundance. In cotton,

the drought- and ABA-induced MAPK cascade MKK3-MPK7-PIP1 is associated with stomatal signaling and drought

tolerance. Another ABA-mediated MAPK module, MAPKKK49-MKK4/MKK5, is associated with abiotic stress responses.

GhMPK17 gene is a novel, well-characterized MAPK, which is associated with responses to osmotic and salt stresses in

cotton. An ABA-independent and drought-mediated MAPK module (MAP3K15-MKK4-MPK6-WRKY59) regulates drought

tolerance in cotton. Drought stress triggers the MAPKKK15 cascade, which phosphorylates the WRKY59 transcriptional

factor. Interestingly, WRKY59 binds to the promoter of DREB2 and regulates the expression of drought-sensitive genes.

Meanwhile, it positively regulates the expression of MAP3K15 by establishing a feedback loop, which regulates drought

tolerance in cotton.

3. Cellular and Molecular Responses to Drought Stress in Plants

Drought stress affects plant growth, leaf and stem dry weights, canopy and root growth, plant height, and the number of

nodes in plants. Similarly, some physiological properties, such as stomatal conductance, transpiration rate, photosynthetic

rate, and water potential decrease under osmotic stress. Finally, osmotic stress limits the accumulation of dry matter by up

to 50% under critical water deficiency . These traits are potential candidates for drought tolerance in plants. Genetic

improvement on the basis of physio-morphological traits is more important because, these traits have vital roles in

maintaining a favorable water balance through stomatal closure, reduced transpiration, high water use efficiency,

accumulation of proline, trihalose, and polyamines, leaf rolling, wax content, deep root system, and earliness .

After successful transduction of signals and sensing the drought stress, plants initiate drought recovery mechanisms

through various physio-morphological and biochemical responses (Figure 2). Plants have developed various mechanisms

to minimize or tolerate multiple stresses. Drought tolerance, drought recovery, drought escape, and drought avoidance are

the four important categories of drought tolerance tools . Tolerant plants subjected to stressful environments adopt an

‘escape scenario’ by utilizing energy for defense mechanisms, which eventually impacts growth and production. During

drought avoidance, plants reduce transpiration and develop deep and vigorous root systems to increase water uptake to

help maintain tissue water potential . Tolerance to drought is the capacity of plants to endure severe dehydration

through osmotic adjustment by osmo-protectants . Drought recovery is the ability of plants to restart growth and

overcome yield deficits following severe stress. Plants have established numerous morpho-physiological adaptations such

as root growth, OA, photosynthetic rate, and stomatal regulation to overcome drought stress (Figure 2).
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Figure 2. Overall pathways of drought stress effects and plant responses to drought stress.
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