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Asthma is a widespread respiratory disease caused by complex contribution from genetic, environmental and
behavioral factors. For several decades, its sensitivity to environmental factors has been investigated in single
exposure (or single family of exposures) studies, which might be a narrow approach to tackle the etiology of such a
complex multifactorial disease. The emergence of the exposome concept, introduced by C. Wild (2005), offers an
alternative to address exposure—health associations.

asthma exposome

| 1. Introduction

Asthma is a heterogeneous chronic respiratory disease characterized by an inflammation of the airways and which
manifests by variable respiratory symptoms (wheeze, shortness of breath, chest tightness and/or cough) and
variable expiratory airflow limitation L. Asthma affects approximately 300 million children and adults worldwide 2,
The prevalence of asthma has dramatically increased over the last decades Bl. The huge research efforts in
identifying the causes of asthma led to the identification of genetic (such as the 17q21 ORMDL3/GSDML region for
early childhood onset asthma), environmental (such as urban vs. rural area) and lifestyle risk factors (such as
tobacco smoking). It also highlighted the complex etiology of this multifactorial disease, e.g., by the identification of
specific windows of susceptibility and complex gene-by-environment interactions 4. The exposome concept,
introduced in the recent years to complement the genome for a better understanding of the development of
complex diseases B, offers new avenues in environmental epidemiology. In this review, the main objective was to
present how the new methodological framework represented by the exposome has been applied to asthma
research to date. After presenting an overview of the concept of exposome, we will review different statistical
approaches to study the exposome-health associations. Finally, recent studies linking multiple families of

exposures to asthma-related outcomes will be discussed.

| 2. Exposome-Health Associations in Practice

Exposome studies imply collection of a large number of exposures. This can be done relying on different methods
of assessment (e.g., self-reported questionnaire, exposure biomarkers, geographic information system-based
(GIS) models, personal sensors, ...), for different time windows (pre-natal, early postnatal, during childhood,
adolescence, adulthood), and, for external factors, with different locations (home, school, work) and spatial
resolutions (e.g., urban indicators measured for various buffers (100, 300, 500 m)). From a methodological point of

view, this large number of variables (possibly larger than the size of the study population) raises issues in terms of
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statistical power and false discovery rate (€. Indeed, the multiplicity of tests implies the rise of the alpha risk, and
methods developed to correct the p-value of an association for multiple hypothesis testing [EIE! |ead to a
decreased statistical power. Therefore, exposome—health association studies deserve a sufficient sample size to
achieve adequate statistical power to detect associations of low to moderate associations sizes, as expected for
most exposures LA Several other statistical challenges specifically linked to exposome studies have to be taken
into account, such as the increased false discovery rate related to the high level of correlation between exposures
and the difficulty to consider “mixture” effects 22131 Until now, no consensus establishing which statistical methods
are to be used in exposome—-health association studies has been reached (14 However, some simulations have
allowed the comparison of the performance of various methods in the exposome research context under some
specific settings. For example, simulation studies compared i) the efficiency of various regression-based
approaches in terms of false positive rate and sensitivity, with and without interactions between exposures 813l jj)
the performance of variable selection models in case-control studies 13; iii) the performance of variables and
function selection methods in the case of nonlinear effects of correlated exposures [24l: and iv) methods to correct
for classical-type exposure measurement error (28, Using the findings of these studies and a review of the
literature, we summarized in Table 1 the strengths and weaknesses of the main statistical approaches used in

exposome studies in the field of respiratory health.

Table 1. Main statistical methods used in exposome-health association studies.

Reference Use of the Method
:me ;fs EXI\:QELedS SOf Strengths Weaknesses of the in Exposome or
y Method Asthma Field
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Reference Use of the Method
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the impact of
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y Method Asthma Field
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Reference Use of the Method

Type of of the

Examples of Weaknesses

Analysis Methods

Strengths

Method

in Exposome or

Asthma Field
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Reference Use of the Method
Strengths Weaknesses of the in Exposome or
Method Asthma Field
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Analysis Methods
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| 3. Conclusions

Asthma is a widespread multifactorial disease, which deserves a comprehensive approach to better understand its
etiology and development. Although most of previous studies in environmental epidemiology focused on a single
exposure (or single exposure family), with the recent emergence of the exposome concept, several studies and
European projects have started to assess the effect of multiple exposures on respiratory health. These studies are
expected to contribute to a better understanding of the associations between the environment and health by using
various holistic approaches. Although the first association studies between the exposome and asthma-related
outcomes conducted so far mainly rely on the EXWAS method for successive single-exposure analysis and the
DSA algorithm for multi-exposures analysis [2111231[241[25][26145] frther studies on larger sample size should attempt
to apply more comprehensive statistical approaches, either able to account for the hierarchical structure of the
multiple layers of the exposome or to account for the possible mixture effects in order to be more consistent with
the complex structure of exposure data.
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