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Asthma is a widespread respiratory disease caused by complex contribution from genetic, environmental and behavioral

factors. For several decades, its sensitivity to environmental factors has been investigated in single exposure (or single

family of exposures) studies, which might be a narrow approach to tackle the etiology of such a complex multifactorial

disease. The emergence of the exposome concept, introduced by C. Wild (2005), offers an alternative to address

exposure–health associations. 
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1. Introduction

Asthma is a heterogeneous chronic respiratory disease characterized by an inflammation of the airways and which

manifests by variable respiratory symptoms (wheeze, shortness of breath, chest tightness and/or cough) and variable

expiratory airflow limitation . Asthma affects approximately 300 million children and adults worldwide . The prevalence

of asthma has dramatically increased over the last decades . The huge research efforts in identifying the causes of

asthma led to the identification of genetic (such as the 17q21 ORMDL3/GSDML region for early childhood onset asthma),

environmental (such as urban vs. rural area) and lifestyle risk factors (such as tobacco smoking). It also highlighted the

complex etiology of this multifactorial disease, e.g., by the identification of specific windows of susceptibility and complex

gene-by-environment interactions . The exposome concept, introduced in the recent years to complement the genome

for a better understanding of the development of complex diseases , offers new avenues in environmental epidemiology.

In this review, the main objective was to present how the new methodological framework represented by the exposome

has been applied to asthma research to date. After presenting an overview of the concept of exposome, we will review

different statistical approaches to study the exposome–health associations. Finally, recent studies linking multiple families

of exposures to asthma-related outcomes will be discussed.

2. Exposome-Health Associations in Practice

Exposome studies imply collection of a large number of exposures. This can be done relying on different methods of

assessment (e.g., self-reported questionnaire, exposure biomarkers, geographic information system-based (GIS) models,

personal sensors, …), for different time windows (pre-natal, early postnatal, during childhood, adolescence, adulthood),

and, for external factors, with different locations (home, school, work) and spatial resolutions (e.g., urban indicators

measured for various buffers (100, 300, 500 m)). From a methodological point of view, this large number of variables

(possibly larger than the size of the study population) raises issues in terms of statistical power and false discovery rate

. Indeed, the multiplicity of tests implies the rise of the alpha risk, and methods developed to correct the p-value of an

association for multiple hypothesis testing  lead to a decreased statistical power. Therefore, exposome–health

association studies deserve a sufficient sample size to achieve adequate statistical power to detect associations of low to

moderate associations sizes, as expected for most exposures . Several other statistical challenges specifically

linked to exposome studies have to be taken into account, such as the increased false discovery rate related to the high

level of correlation between exposures and the difficulty to consider “mixture” effects . Until now, no consensus

establishing which statistical methods are to be used in exposome–health association studies has been reached .

However, some simulations have allowed the comparison of the performance of various methods in the exposome

research context under some specific settings. For example, simulation studies compared i) the efficiency of various

regression-based approaches in terms of false positive rate and sensitivity, with and without interactions between

exposures ; ii) the performance of variable selection models in case-control studies ; iii) the performance of

variables and function selection methods in the case of nonlinear effects of correlated exposures ; and iv) methods to

correct for classical-type exposure measurement error . Using the findings of these studies and a review of the

literature, we summarized in Table 1 the strengths and weaknesses of the main statistical approaches used in exposome

studies in the field of respiratory health.
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Table 1. Main statistical methods used in exposome-health association studies.

Type of
Analysis

Examples of
Methods Strengths Weaknesses

Reference
of the
Method

Use of the Method in
Exposome or Asthma
Field

Single-
exposure

regression-
based

method

Exposome-
Wide

Association
Study

(ExWAS)

Standardized method

High sensitivity to

identify true predictors

Simple interpretation

Easy to summarize the

results in a figure (e.g.,

volcano plot)

Interaction

between

exposures is not

tested

Results do not

account for

confounding

effect by co-

exposures

High false

discovery rate

Patel et
al., 2010

Sbihi et al., 2017 ;
North et al., 2017 ;

Lepeule et al., 2018 ;
Agier et al., 2019 ;

Vrijheid et al., 2020 ;
Agier et al., 2020 ;
Warembourg et al.,

2019 ;
Nieuwenhuijsen et al.,

2019 ;
Granum et al. 
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Type of
Analysis

Examples of
Methods Strengths Weaknesses

Reference
of the
Method

Use of the Method in
Exposome or Asthma
Field

Multiple-
exposures
regression-

based
methods

Deletion–
Substitution–

Addition
(DSA)

algorithm

All exposure variables

are considered in a

unique model with

possibility to include

interactions

The selected model is

able to account for

confounding effect by

co-exposures

Low false discovery

proportion to identify

true predictors

Moderate

sensitivity to

identify true

predictors

Instability

Time-consuming

and thus not

adapted for

exposome of

more than a few

hundred

variables

Sinisi and
van der

Laan 2004

Agier et al., 2019 ;
Vrijheid et al., 2020 ;
Agier et al., 2020 ;
Warembourg et al.,

2019 ;
Nieuwenhuijsen et al.,
2019  Granum et al.

Elastic Net
(ENET) and

Least
Absolute

Shrinkage
and Selection

Operator
(LASSO)

Able to deal with

correlated variables

The selected model is

able to account for

confounding effect by

co-exposures

Good prediction

performance

Moderate

sensitivity to

identify true

predictors

Instability

Zou and
Hastie

2005 [ ;
Tibshirani
1996 

Pries et al., 2019 ;
Cowell et al., 2019 

Weighted
Quantile Sum

(WQS)
regression

Able to deal with

multicollinearity

The use of quantiles

reduces the impact of

outliers

Not able to

consider

categorical

exposures

All exposures

must be

associated with

the outcome in

the same

direction (i.e., all

protective or all

risks factors)

Carrico et
al., 2015 -
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Type of
Analysis

Examples of
Methods Strengths Weaknesses

Reference
of the
Method

Use of the Method in
Exposome or Asthma
Field

Supervised
clustering

approaches

Latent Class
Analysis

(LCA)

Suitable for longitudinal

data (Latent Transition

Analysis )

Able to consider the

outcome in a

supervised approach

Not able to deal

with continuous

exposures

Model requires

low correlation

between

variables

Interpretation of

results may be

difficult in case of

large number of

clusters

Limited

dimension of the

exposome (in

relation to the

sample size)

Goodman
et al., 1974

Buck Louis et al., 2019
; Harmouche-Karaki

et al., 2019 

Bayesian
Profile

Regression
(BPR)

Consider all exposure

variables in a unique

model

Able to determine the

number of clusters

minimizing the least-

squared distance to the

probability matrix

Able to deal with

combined continuous

and categorical

variables

Computing time

Interpretation of

results may be

difficult in case of

large number of

clusters

Unstable method

Molitor et
al., 2020

Berger et al., 2020 ;
Belloni et al., 2020 
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Type of
Analysis

Examples of
Methods Strengths Weaknesses

Reference
of the
Method

Use of the Method in
Exposome or Asthma
Field

Analysis
accounting

for the
hierarchical
structure of

the data

Meet-in-the-
Middle (MITM)

Considers the

hierarchical layers in

the exposome and the

causal link between

them to better

document the causality

in exposome–health

associations

Needs an a priori

selection of

intermediate

layers

Chadeau-
Hyam M et
al., 2011

.

Vineis et al., 2020 ;
Jeong et al., 2018 ;
Cadiou et al., 2020 

Bayesian
Kernel

Machine
Regression

(BKMR)

Use of a smooth kernel

function able to deal

with non-monotonic

exposure-outcome

relationship

Able to deal with a

priori knowledge about

group of exposures

Able to deal with

multicollinearity

Not able to deal

with categorical

outcomes

The hierarchical

variable selection

option can select

only one variable

per group

Bobb et
al., 2015 Berger et al., 2020 

3. Conclusions

Asthma is a widespread multifactorial disease, which deserves a comprehensive approach to better understand its

etiology and development. Although most of previous studies in environmental epidemiology focused on a single exposure

(or single exposure family), with the recent emergence of the exposome concept, several studies and European projects

have started to assess the effect of multiple exposures on respiratory health. These studies are expected to contribute to

a better understanding of the associations between the environment and health by using various holistic approaches.

Although the first association studies between the exposome and asthma-related outcomes conducted so far mainly rely

on the ExWAS method for successive single-exposure analysis and the DSA algorithm for multi-exposures analysis 

, further studies on larger sample size should attempt to apply more comprehensive statistical approaches,

either able to account for the hierarchical structure of the multiple layers of the exposome or to account for the possible

mixture effects in order to be more consistent with the complex structure of exposure data.
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