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The human microbiota is a diverse microbial ecosystem associated with many beneficial physiological functions, as well

as numerous disease etiologies. Dominated by bacteria, the microbiota also includes commensal populations of fungi,

viruses, archaea, and protists. Unlike bacterial microbiota, which was extensively studied in the past two decades, these

non-bacterial microorganisms, their functional roles, and their interaction with one another or with host immune system

have not been as widely explored. This review covers the recent findings on the fungal communities of the human

gastrointestinal microbiota, termed the “mycobiome”, and their involvement in health and disease, with particular focus on

the pathophysiology of inflammatory bowel disease.
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Introduction

Fungi are ubiquitous in the environment and a part of all Earth’s ecosystems . In addition, a diverse population of

commensal fungi has been recognized as a fundamental component of the human body, co-existing with other microbes

within the human microbiota.  In contrast to the vast number of studies on the bacterial communities of the microbiota

conducted in the last decades, the fungal constituents of the microbiota, the mycobiome, received much less attention.

Still, recent research acknowledged human mycobiome as a dynamic community, responsive to environmental and

pathophysiological changes, and playing a vital role in host metabolism as well as in maintenance of host immune

homeostasis.  Human mycobiome is also implicated in various disease conditions, including inflammatory bowel

disease (IBD) and its two main entities: Crohn’s disease (CD) and ulcerative colitis (UC). 

Human mycobiome research

Early research of human mycobiome was based on culture-dependent techniques for the identification and

characterization of commensal fungal communities. While the new molecular culture-independent next-generation

sequencing (NGS) techniques proved very effective for analyzing the bacterial component of microbiota, the DNA-based

sequencing studies of the human mycobiome are faced with several limitations. Fungi account for a relatively small

percentage of the human microbiota, with 10  to 10  fungal cells per gram of fecal matter (compared to 10  bacterial cells

per gram)  and only 0.1% of the 9.9 million reference genes in a current human gut microbial metagenomic reference

catalog are reported to be of eukaryotic origin.  Additionally, the identification of composition and diversity of the

fungal community is influenced by the nucleic acid isolation method,  the choice of sequencing primer pairs,  as well

as different sequencing technologies  and bioinformatics pipelines.  Finally, the incomplete databases for

taxonomic assignment and annotation of fungal genomes present a serious difficulty in studying the human mycobiome.

 

The usual molecular target for identifying fungi are the internal transcribed spacer (ITS) regions of ribosomal RNA genes.

As the ITS regions are highly divergent among fungi, these regions are often sufficiently different to classify fungi to the

species level. In 2012, ITS was designated as the universal DNA barcode marker for the kingdom Fungi,  although this

approach revealed potential PCR biases.  A recent study proposed adding translational elongating factor 1α (TEF1α)

as a secondary barcode to the ITS barcode in order to increase the taxonomic resolution power and enhance the

accuracy of fungal species identification.  On the other hand, the study comparing 18S rRNA screening to ITS

sequencing showed higher sensitivity of 18S rRNA RT-PCR combined with SANGER sequencing, as this method

detected fungal communities in several samples which were ITS negative.  Currently, there is no consensus on the best

methodological approach for identifying human mycobiome, and consequently the results of studies using different

methods vary.
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Human gut mycobiome

Human mycobiome inhabits the gastrointestinal tract but also skin, respiratory tract, genitourinary tract, as well as other

mucosal surfaces in the host. The gastrointestinal tract is the most studied fungal niche in humans. Reports suggest that

the human gut is populated by three fungal phyla, Ascomycota, Basidiomycota, and Zygomycota,   with the “core” 10

genera identified in the majority of gastrointestinal tract samples consisting of Candida (particularly C. albicans),

Saccharomyces (particularly S. cerevisiae), Penicillium, Aspergillus, Cryptococcus, Malassezia (particularly M. restricta),

Cladosporium, Galactomyces, Debaryomyces, and Trichosporon.  The composition of gut mycobiome seems to be

dynamic over time and far more variable than the composition of bacteria, both in humans  and in mice.  Most studies

consider fungi as commensal organisms in the gut, acquired early in life.  This has recently been challenged claiming

that fungi do not routinely colonize the gastrointestinal tract of healthy adults,  instead postulating that all fungi identified

in the human stool samples could be explained by their presence in the mouth or the diet. Indeed, diet is perceived as a

crucial factor affecting the composition and variability of gut mycobiome.  For instance, gut mycobiome content was

found to considerably differ between individuals having different dietary patterns, i.e., vegetarians and people on a

conventional Western diet.  Additionally, reports suggest that the abundance of Candida in the gut positively

correlated with high carbohydrate diets, and inversely correlated to consumption of total saturated fatty acids, while recent

intake of short-chain fatty acids reduced the abundance of Aspergillus.  Another notable finding of this study was the co-

occurrence of Candida with particular bacterial (Prevotella and Rumminococcus) and archaeal genera

(Methanobrevibacter), providing support for the interkingdom syntrophic relationships in host metabolism.

One of the first indications that fungi play a role in modulating gut homeostasis is the use of Saccharomyces boulardii as a

constituent of herbal medicine traditionally utilized in Southeast Asia to reduce the severe diarrhea in patients with

cholera. S. boulardii is still prescribed as a probiotic to prevent diarrhea and intestinal colonization with

Clostridioides difficile following antibiotic therapy  and is efficient in preventing recurrent C. difficile infections.  The

positive effects of S. boulardii come from inactivating pathogen toxins and directly inhibiting the growth and invasion of

intestinal pathogens,   as well as boosting the host immunity and exerting anti-inflammatory functions in ulcerative

colitis,  Crohn’s disease,  and C. difficile colitis.  A recent report suggests beneficial effects of another probiotic

yeast, Candida kefyr, in reducing the severity of colitis in animal models by decreasing the abundance of Bacteroides and

lowering IL-6 production, thus attenuating inflammation in the intestine.  

Although fungi can exert beneficial effects to host health, the disturbance of gut mycobiota was also implicated in various

gastrointestinal diseases. A recent study demonstrated no significant changes in mycobiome richness between obese and

non-obese subjects; however, some specific compositional differences were noted. The most prevalent genus in non-

obese individuals was Mucor, with its abundance significantly higher in non-obese individuals, and inversely correlated

with metabolic markers of obesity.  In colorectal cancer (CRC), an alteration of fungal composition and ecology was

observed, characterized by an increased Basidiomycota/Ascomycota ratio, depletion of S. cerevisiae, as well as

enrichment of Rhodotorula, Malassezia, and Acremonium genera along with several Aspergillus species (including A.
flavus, a major producer of highly toxic carcinogen aflatoxin), suggesting their possible contribution towards CRC

pathogenesis.  Insights into gut mycobiota playing a role in irritable bowel syndrome (IBS) were also reported.

Decreased fungal diversity and dysbiosis were found in IBS patients, correlating mycobiota signature with visceral

hypersensitivity, which is considered as one of the major pathophysiological features of IBS.  Interestingly, treatment

with fungicides could recover the visceral hypersensitivity to normal levels.  This finding is in accordance with a previous

study that reported yeast-free diets and antifungal treatments as helpful for IBS subjects.  In addition, S. boulardii was

found to be effective in improving symptoms and the quality of life in IBS patients.  

Human gut mycobiome in IBD

The majority of research on the effects of gut mycobiota in gastrointestinal diseases was however concentrated on

intestinal inflammation and IBD (Table 1). Even before the advent of molecular methods and next-generation sequencing

(NGS), increased levels of anti-S. cerevisiae antibodies (ASCA) were commonly found in the serum of CD patients,

suggesting the host’s immune responses toward intestinal fungi.  These antibodies, raised against mannan, a

component in the fungal cell wall, were soon identified as a reliable diagnostic biomarker for CD and predictors of the

disease course.  ASCA also recognize many other fungi, including Candida.  Indeed, reduced fungal diversity and

significantly increased abundance of specific Candida species were found in pediatric IBD patients.  Sokol et al. report a

similar finding in adult subjects with IBD: a decrease in gut mycobiome biodiversity and elevated

Basidiomycota/Ascomycota ratio, mainly due to the increased prevalence and abundance of C. albicans and reduction of

S. cerevisiae.  Additional studies confirmed an increased representation of Candida species in IBD, namely C. tropicalis
in familial CD,  as well as C. glabrata in colonic biopsy samples from patients with CD.  Besides elevated
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Basidiomycota/Ascomycota ratio in IBD patients in comparison to healthy controls and in IBD flares vs. IBD remission,

 fungal dysbiosis in IBD patients is also characterized by increased levels of Gibberella moniliformis, Alternaria
brassicola, Aspergillus clavatus, and Cystofilobasidiaceae,  while Saccharomyces cerevisiae and Malassezia
sympodialis are markedly decreased.  Additionally, studies confirm fungal burden is increased in both CD and UC,

with the fungal cells translocating trough the intestinal barrier during the chronic stage of colitis.  

Table 1. Major contributors of mycobiome changes in IBD.

IBD type change reference

CD + UC ↑ Basidiomycota/Ascomycota ratio

CD + UC ↑ Candida albicans

CD ↑ Candida tropicalis

CD ↑ Candida glabrata

CD ↑ Gibberella moniliformis

CD ↑ Alternaria brassicola

CD ↑ Aspregillus clavatus

CD ↑ Cystofilobasidiaceae family

CD + UC ↓ Saccharomyces cerevisiae

CD + UC ↓ Malassezia sympodialis

UC ↓ fungal diversity

CD + UC ↑ fungal burden

UC ↑ fungal-bacteria interactions

CD ↓ fungal-bacteria interactions

Some of the studies simultaneously analyzed both the fungal and bacterial microbiota revealing that the intestinal

microbial network was different in IBD patients when compared to healthy individuals. Sokol et al. identified positive

correlations between the decreased abundance of S. cerevisiae and reduction of several bacterial genera, such as

Bifidobacterium, Blautia, Roseburia, and Ruminococcus. The total number and the intensity of fungal–bacterial

associations were increased in UC, with distinct interactions potentially involved in the inflammatory processes. On the

other hand, weaker fungal–bacteria correlations were found in CD when compared to healthy volunteers, implying

disrupted connections between two kingdoms in this disease.  A study by Hoarau et al. reported elevated levels of C.
tropicalis positively correlated with Serratia marcescens and Escherichia coli in CD. Moreover, in vitro experiments

confirmed these species form thicker mixed biofilm than any of the species generates individually, creating a commensal

niche additionally enriched in fungal hyphae, a form of growth usually implicated in pathogenic conditions.  The fact that

interactions between gut bacteria and fungi are closely associated with disease was also investigated in mouse models of

dextran sulfate sodium (DSS) induced colitis. Qiu et al. found that inflamed mouse intestine contained increased fungal

burden in the mucosa, but decreased in the feces. The dysbiosis was characterized by elevated Wickerhamomyces,
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Alternaria, and Candida, together with reduced Cryptococcus, Phialemonium, and Wallemia, and unidentified

Saccharomycetales genus.  The study further shows mice with fungi depleted by fluconazole treatment exhibited

aggravated colitis, in contrast to bacteria-depleted mice, that showed alleviated intestinal inflammation and a trend of

disease remission. This finding suggests that bacteria are the major driving force in acute inflammation and fungi may act

as a counterbalance in maintaining the microbial homeostasis in acute colitis. In chronic recurrent colitis however, fungi

may aggravate the disease severity and translocate into locations outside the gut.  A recent study by Sovran et al.

identified opposing effects of administrating C. albicans or S. boulardii to mice with DSS-induced colitis, resulting in

increased disease severity or reduced disease symptoms, respectively. However, broad-spectrum antibiotic treatment

protected the mice from colitis and C. albicans had no pro-inflammatory effect when administered to mice with disrupted

bacterial microbiota, suggesting bacteria are essential for the development of colitis and C. albicans requires the presence

of specific bacteria that trigger the intestinal inflammation to increase the disease intensity. On the other hand, mice with

depleted Enterobacteriaceae exhibited normal susceptibility to colitis, but neither C. albicans nor S. boulardii could exert

disease-modulating effects in this experimental setting. After reintroducing Enterobacteriaceae, both C. albicans and S.
boulardii recovered their effects in severity of colitis.  

The host immune system recognizes fungi using pattern recognition receptors (PRRs), with the resulting host responses

ranging from tolerance to inflammation. The key PRR for coordinating host response to fungi is Dectin-1 (CLEC7A), a C-

type lectin receptor that recognizes β-glucans in the fungal cell wall.  Dectin-1 activates macrophages and dendritic

cells, initiates phagocytosis of fungi, and induces signaling cascade via caspase-associated recruitment domain-

containing protein 9 (CARD9) and NF-kB to produce pro-inflammatory cytokines. A recent study demonstrated a central

role of Dectin-1 in regulating the severity of inflammation in mouse models of DSS-induced colitis.  Dectin-1 deficient

mice were found to develop more severe colitis, due to the overgrowth of opportunistic fungi (i.e., Candida and

Trichosporon), while treatment with antifungal drug fluconazole ameliorated the disease.  The same study revealed

that a polymorphism in the Dectin-1 gene was associated with increased severity of disease in patients with UC.

Recent research also identified CARD9 as the key downstream signaling molecule for the induction of immune response

to fungi.  CARD9-deficient patients are especially susceptible to fungal infections and polymorphism in CARD9 gene is

associated with a higher risk of developing IBD.  Interestingly, Candida overgrowth, which is one of the characteristic

features in IBD patients, could not be positively correlated with CARD9 polymorphism.  Instead, Candida was hardly

detectible in CARD9 deficient mice, suggesting this taxon was not the driver of dysbiosis as in dectin-1 deficient animals.

 IL-17 and IL-22 were also found to affect commensal fungal communities. A clinical study revealed secukinumab, an

IL-17A antagonist, was associated with exacerbations in patients with CD, identifying the higher rate of fungal infections in

treated subjects.  Both IL-17 and IL-22 might act as inducers of antimicrobial peptides (AMPs) in epithelial cells and

were reported as protective against mucosal fungal infections.  

Conclusion 

The significant role of mycobiome in maintaining human homeostasis, as well as in disease etiology, is slowly unveiling.

The impact of the diverse fungal communities on human health needs to be determined in more detail in order to expand

the current “bacteriocentric” view of human microbiota and provide more holistic understanding of the human

superorganism. To achieve this task, two important prerequisites are essential: (1) expanding fungal reference genomes

in the currently available databases for reliable identification of those microorganisms; (2) establishing uniform methods of

detection for fungal commensal populations to ensure consistent and comparable evaluation of fungal abundance in

different human body sites. The improved tools and the newly generated data would provide deeper insight into human

mycobiome and the possibilities of its exploitation in promoting human health and ameliorating disease. Although

microbiome-directed therapy is still in its infancy, studies conducted thus far suggest that direct or indirect alterations in

human mycobiome may improve health outcomes in inflammatory diseases such as IBD.
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