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The human microbiota is a diverse microbial ecosystem associated with many beneficial physiological functions, as

well as numerous disease etiologies. Dominated by bacteria, the microbiota also includes commensal populations

of fungi, viruses, archaea, and protists. Unlike bacterial microbiota, which was extensively studied in the past two

decades, these non-bacterial microorganisms, their functional roles, and their interaction with one another or with

host immune system have not been as widely explored. This review covers the recent findings on the fungal

communities of the human gastrointestinal microbiota, termed the “mycobiome”, and their involvement in health

and disease, with particular focus on the pathophysiology of inflammatory bowel disease.

gut mycobiome  inflammatory bowel disease (IBD)

Introduction

Fungi are ubiquitous in the environment and a part of all Earth’s ecosystems . In addition, a diverse population of

commensal fungi has been recognized as a fundamental component of the human body, co-existing with other

microbes within the human microbiota.  In contrast to the vast number of studies on the bacterial communities of

the microbiota conducted in the last decades, the fungal constituents of the microbiota, the mycobiome, received

much less attention. Still, recent research acknowledged human mycobiome as a dynamic community, responsive

to environmental and pathophysiological changes, and playing a vital role in host metabolism as well as in

maintenance of host immune homeostasis.  Human mycobiome is also implicated in various disease

conditions, including inflammatory bowel disease (IBD) and its two main entities: Crohn’s disease (CD) and

ulcerative colitis (UC). 

Human mycobiome research

Early research of human mycobiome was based on culture-dependent techniques for the identification and

characterization of commensal fungal communities. While the new molecular culture-independent next-generation

sequencing (NGS) techniques proved very effective for analyzing the bacterial component of microbiota, the DNA-

based sequencing studies of the human mycobiome are faced with several limitations. Fungi account for a

relatively small percentage of the human microbiota, with 10  to 10  fungal cells per gram of fecal matter

(compared to 10  bacterial cells per gram)  and only 0.1% of the 9.9 million reference genes in a current human

gut microbial metagenomic reference catalog are reported to be of eukaryotic origin.   Additionally, the

identification of composition and diversity of the fungal community is influenced by the nucleic acid isolation
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method,   the choice of sequencing primer pairs,  as well as different sequencing technologies  and

bioinformatics pipelines.  Finally, the incomplete databases for taxonomic assignment and annotation of fungal

genomes present a serious difficulty in studying the human mycobiome.  

The usual molecular target for identifying fungi are the internal transcribed spacer (ITS) regions of ribosomal RNA

genes. As the ITS regions are highly divergent among fungi, these regions are often sufficiently different to classify

fungi to the species level. In 2012, ITS was designated as the universal DNA barcode marker for the kingdom

Fungi,  although this approach revealed potential PCR biases.  A recent study proposed adding translational

elongating factor 1α (TEF1α) as a secondary barcode to the ITS barcode in order to increase the taxonomic

resolution power and enhance the accuracy of fungal species identification.   On the other hand, the study

comparing 18S rRNA screening to ITS sequencing showed higher sensitivity of 18S rRNA RT-PCR combined with

SANGER sequencing, as this method detected fungal communities in several samples which were ITS negative.

 Currently, there is no consensus on the best methodological approach for identifying human mycobiome, and

consequently the results of studies using different methods vary.

Human gut mycobiome

Human mycobiome inhabits the gastrointestinal tract but also skin, respiratory tract, genitourinary tract, as well as

other mucosal surfaces in the host. The gastrointestinal tract is the most studied fungal niche in humans. Reports

suggest that the human gut is populated by three fungal phyla, Ascomycota, Basidiomycota, and Zygomycota,

   with the “core” 10 genera identified in the majority of gastrointestinal tract samples consisting of Candida

(particularly C. albicans), Saccharomyces (particularly S. cerevisiae), Penicillium, Aspergillus, Cryptococcus,

Malassezia (particularly M. restricta), Cladosporium, Galactomyces, Debaryomyces, and Trichosporon.  The

composition of gut mycobiome seems to be dynamic over time and far more variable than the composition of

bacteria, both in humans  and in mice.  Most studies consider fungi as commensal organisms in the gut,

acquired early in life.  This has recently been challenged claiming that fungi do not routinely colonize the

gastrointestinal tract of healthy adults,  instead postulating that all fungi identified in the human stool samples

could be explained by their presence in the mouth or the diet. Indeed, diet is perceived as a crucial factor affecting

the composition and variability of gut mycobiome.  For instance, gut mycobiome content was found to

considerably differ between individuals having different dietary patterns, i.e., vegetarians and people on a

conventional Western diet.  Additionally, reports suggest that the abundance of Candida in the gut positively

correlated with high carbohydrate diets, and inversely correlated to consumption of total saturated fatty acids, while

recent intake of short-chain fatty acids reduced the abundance of Aspergillus.  Another notable finding of this

study was the co-occurrence of Candida with particular bacterial (Prevotella and Rumminococcus) and archaeal

genera (Methanobrevibacter), providing support for the interkingdom syntrophic relationships in host metabolism.

One of the first indications that fungi play a role in modulating gut homeostasis is the use of Saccharomyces

boulardii as a constituent of herbal medicine traditionally utilized in Southeast Asia to reduce the severe diarrhea in

patients with cholera. S. boulardii is still prescribed as a probiotic to prevent diarrhea and intestinal colonization

with Clostridioides  difficile following antibiotic therapy  and is efficient in preventing recurrent C. difficile
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infections.  The positive effects of S. boulardii come from inactivating pathogen toxins and directly inhibiting the

growth and invasion of intestinal pathogens,    as well as boosting the host immunity and exerting anti-

inflammatory functions in ulcerative colitis,  Crohn’s disease,  and C. difficile colitis.  A recent report

suggests beneficial effects of another probiotic yeast, Candida kefyr, in reducing the severity of colitis in animal

models by decreasing the abundance of Bacteroides and lowering IL-6 production, thus attenuating inflammation in

the intestine.  

Although fungi can exert beneficial effects to host health, the disturbance of gut mycobiota was also implicated in

various gastrointestinal diseases. A recent study demonstrated no significant changes in mycobiome richness

between obese and non-obese subjects; however, some specific compositional differences were noted. The most

prevalent genus in non-obese individuals was Mucor, with its abundance significantly higher in non-obese

individuals, and inversely correlated with metabolic markers of obesity.  In colorectal cancer (CRC), an alteration

of fungal composition and ecology was observed, characterized by an increased Basidiomycota/Ascomycota ratio,

depletion of S. cerevisiae, as well as enrichment of Rhodotorula, Malassezia, and Acremonium genera along with

several Aspergillus species (including A. flavus, a major producer of highly toxic carcinogen aflatoxin), suggesting

their possible contribution towards CRC pathogenesis.  Insights into gut mycobiota playing a role in irritable

bowel syndrome (IBS) were also reported. Decreased fungal diversity and dysbiosis were found in IBS patients,

correlating mycobiota signature with visceral hypersensitivity, which is considered as one of the major

pathophysiological features of IBS.  Interestingly, treatment with fungicides could recover the visceral

hypersensitivity to normal levels.  This finding is in accordance with a previous study that reported yeast-free

diets and antifungal treatments as helpful for IBS subjects.   In addition, S. boulardii was found to be effective in

improving symptoms and the quality of life in IBS patients.  

Human gut mycobiome in IBD

The majority of research on the effects of gut mycobiota in gastrointestinal diseases was however concentrated on

intestinal inflammation and IBD (Table 1). Even before the advent of molecular methods and next-generation

sequencing (NGS), increased levels of anti-S. cerevisiae antibodies (ASCA) were commonly found in the serum of

CD patients, suggesting the host’s immune responses toward intestinal fungi.  These antibodies, raised against

mannan, a component in the fungal cell wall, were soon identified as a reliable diagnostic biomarker for CD and

predictors of the disease course.  ASCA also recognize many other fungi, including Candida.  Indeed,

reduced fungal diversity and significantly increased abundance of specific Candida species were found in pediatric

IBD patients.  Sokol et al. report a similar finding in adult subjects with IBD: a decrease in gut mycobiome

biodiversity and elevated Basidiomycota/Ascomycota ratio, mainly due to the increased prevalence and abundance

of C. albicans and reduction of S. cerevisiae.  Additional studies confirmed an increased representation of

Candida species in IBD, namely C. tropicalis in familial CD,  as well as C. glabrata in colonic biopsy samples from

patients with CD.  Besides elevated Basidiomycota/Ascomycota ratio in IBD patients in comparison to healthy

controls and in IBD flares vs. IBD remission,  fungal dysbiosis in IBD patients is also characterized by increased

levels of Gibberella moniliformis, Alternaria brassicola, Aspergillus clavatus, and Cystofilobasidiaceae,   while
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Saccharomyces cerevisiae and Malassezia sympodialis are markedly decreased.  Additionally, studies confirm

fungal burden is increased in both CD and UC,  with the fungal cells translocating trough the intestinal barrier

during the chronic stage of colitis.  

Table 1. Major contributors of mycobiome changes in IBD.

IBD type change reference

CD + UC ↑ Basidiomycota/Ascomycota ratio

CD + UC ↑ Candida albicans

CD ↑ Candida tropicalis

CD ↑ Candida glabrata

CD ↑ Gibberella moniliformis

CD ↑ Alternaria brassicola

CD ↑ Aspregillus clavatus

CD ↑ Cystofilobasidiaceae family

CD + UC ↓ Saccharomyces cerevisiae

CD + UC ↓ Malassezia sympodialis

UC ↓ fungal diversity

CD + UC ↑ fungal burden
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UC ↑ fungal-bacteria interactions

CD ↓ fungal-bacteria interactions

Some of the studies simultaneously analyzed both the fungal and bacterial microbiota revealing that the intestinal

microbial network was different in IBD patients when compared to healthy individuals. Sokol et al. identified positive

correlations between the decreased abundance of S. cerevisiae and reduction of several bacterial genera, such as

Bifidobacterium, Blautia, Roseburia, and Ruminococcus. The total number and the intensity of fungal–bacterial

associations were increased in UC, with distinct interactions potentially involved in the inflammatory processes. On

the other hand, weaker fungal–bacteria correlations were found in CD when compared to healthy volunteers,

implying disrupted connections between two kingdoms in this disease.  A study by Hoarau et al. reported elevated

levels of C. tropicalis positively correlated with Serratia marcescens and Escherichia coli in CD. Moreover, in vitro

experiments confirmed these species form thicker mixed biofilm than any of the species generates individually,

creating a commensal niche additionally enriched in fungal hyphae, a form of growth usually implicated in

pathogenic conditions.  The fact that interactions between gut bacteria and fungi are closely associated with

disease was also investigated in mouse models of dextran sulfate sodium (DSS) induced colitis. Qiu et al. found

that inflamed mouse intestine contained increased fungal burden in the mucosa, but decreased in the feces. The

dysbiosis was characterized by elevated Wickerhamomyces, Alternaria, and Candida, together with reduced

Cryptococcus, Phialemonium, and Wallemia, and unidentified Saccharomycetales genus.  The study further

shows mice with fungi depleted by fluconazole treatment exhibited aggravated colitis, in contrast to bacteria-

depleted mice, that showed alleviated intestinal inflammation and a trend of disease remission. This finding

suggests that bacteria are the major driving force in acute inflammation and fungi may act as a counterbalance in

maintaining the microbial homeostasis in acute colitis. In chronic recurrent colitis however, fungi may aggravate the

disease severity and translocate into locations outside the gut.  A recent study by Sovran et al. identified

opposing effects of administrating C. albicans or S. boulardii to mice with DSS-induced colitis, resulting in

increased disease severity or reduced disease symptoms, respectively. However, broad-spectrum antibiotic

treatment protected the mice from colitis and C. albicans had no pro-inflammatory effect when administered to

mice with disrupted bacterial microbiota, suggesting bacteria are essential for the development of colitis and C.

albicans requires the presence of specific bacteria that trigger the intestinal inflammation to increase the disease

intensity. On the other hand, mice with depleted Enterobacteriaceae exhibited normal susceptibility to colitis, but

neither C. albicans nor S. boulardii could exert disease-modulating effects in this experimental setting. After

reintroducing Enterobacteriaceae, both C. albicans and S. boulardii recovered their effects in severity of colitis.  

The host immune system recognizes fungi using pattern recognition receptors (PRRs), with the resulting host

responses ranging from tolerance to inflammation. The key PRR for coordinating host response to fungi is Dectin-1

(CLEC7A), a C-type lectin receptor that recognizes β-glucans in the fungal cell wall.  Dectin-1 activates

macrophages and dendritic cells, initiates phagocytosis of fungi, and induces signaling cascade via caspase-

associated recruitment domain-containing protein 9 (CARD9) and NF-kB to produce pro-inflammatory cytokines. A
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recent study demonstrated a central role of Dectin-1 in regulating the severity of inflammation in mouse models of

DSS-induced colitis.  Dectin-1 deficient mice were found to develop more severe colitis, due to the overgrowth of

opportunistic fungi (i.e., Candida and Trichosporon), while treatment with antifungal drug fluconazole ameliorated

the disease.  The same study revealed that a polymorphism in the Dectin-1 gene was associated with

increased severity of disease in patients with UC.  Recent research also identified CARD9 as the key

downstream signaling molecule for the induction of immune response to fungi.  CARD9-deficient patients are

especially susceptible to fungal infections and polymorphism in CARD9 gene is associated with a higher risk of

developing IBD.  Interestingly, Candida overgrowth, which is one of the characteristic features in IBD patients,

could not be positively correlated with CARD9 polymorphism.  Instead, Candida was hardly detectible in CARD9

deficient mice, suggesting this taxon was not the driver of dysbiosis as in dectin-1 deficient animals.  IL-17 and

IL-22 were also found to affect commensal fungal communities. A clinical study revealed secukinumab, an IL-17A

antagonist, was associated with exacerbations in patients with CD, identifying the higher rate of fungal infections in

treated subjects.  Both IL-17 and IL-22 might act as inducers of antimicrobial peptides (AMPs) in epithelial cells

and were reported as protective against mucosal fungal infections.  

Conclusion 

The significant role of mycobiome in maintaining human homeostasis, as well as in disease etiology, is slowly

unveiling. The impact of the diverse fungal communities on human health needs to be determined in more detail in

order to expand the current “bacteriocentric” view of human microbiota and provide more holistic understanding of

the human superorganism. To achieve this task, two important prerequisites are essential: (1) expanding fungal

reference genomes in the currently available databases for reliable identification of those microorganisms; (2)

establishing uniform methods of detection for fungal commensal populations to ensure consistent and comparable

evaluation of fungal abundance in different human body sites. The improved tools and the newly generated data

would provide deeper insight into human mycobiome and the possibilities of its exploitation in promoting human

health and ameliorating disease. Although microbiome-directed therapy is still in its infancy, studies conducted thus

far suggest that direct or indirect alterations in human mycobiome may improve health outcomes in inflammatory

diseases such as IBD.
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