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Breast cancer is the leading cause of mortality in women. Even when the tumor is completely resected, tumor

recurrence occurs in up to one third of patients, with metastatic disease being the direct cause of death. Surgery

may generate systemic inflammatory response syndrome, which causes oxidative stress, and in turn impairs the

anti-tumor immunologic response. Surgical stress activates a neuroendocrine response in the hypothalamic–

pituitary–adrenal axis (HPA axis) and sympathetic nervous system (SNS), which results in the suppression of cell-

mediated immunity (CMI); this suppression is induced by the release of neuroendocrine mediators such as

catecholamines, cortisol, and cytokines. These mediators, including vascular endothelial growth factor (VEGF),

matrix metalloproteinases (MMPs) and interleukin (IL) 6 and 8, are endogenous regulators that promote tumor

growth and angiogenesis, thereby favoring metastasis. Recent studies reveal that the type of anaesthesia

administered during cancer surgery may influence the course of the disease. 

anaesthetic drugs and techniques  opioids  propofol  volatile agent  breast cancer

cancer recurrence

1. Anaesthetics and Cancer Relapse

1.1. Hypnotics

Propofol

Propofol may have beneficial effects on survival in cancer patients, including breast cancer patients. This agent

inhibits tumor cell migration and proliferation, promotes tumor apoptosis and has anti-inflammatory activity .

This agent acts on the immune system at the level of natural killer lymphocytes (NK), which belong to innate

immunity. Cho et al.  conducted a prospective study comparing a group of patients who received propofol-

ketorolac vs. sevoflurane-fentanyl. The authors observed a reduction in NK activity in the sevoflurane group,

whereas this activity was increased in the propofol group. Although evidence consistently shows that propofol has

tumor-killing activity, two recent studies associate it with pro-tumor activity in breast and bladder cancer, mediated

by the activation of the Nrf2 pathway and the reduction in p53 levels .

Propofol favors tumor cell apoptosis by affecting matrix metalloproteinase (MMPs) expression, which play a crucial

role in extracellular protein degradation and epithelial-mesenchymal transition (EMT), activate vascular endothelial

growth factor (VEGF) , and inhibit intrinsic apoptosis pathways . Two pathways have been identified to be
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involved in the inhibition of the synthesis of these proteins: the MAP-kinase pathway (ERK1/2, JNK y p38) in colon

cancer , and NF-κB in breast cancer .

As for the ability to induce tumor apoptosis, several pathways have been investigated, such as the inhibition of anti-

apoptosis mechanisms, including Bcl-2, Sox4, Akt/mTOR and Wnt/β-catenin, and the increase in pathways

involving tumor suppressor genes such as the Bax, ING3, Fox01 and caspase pathways . In

addition, Wang et al.  demonstrated that propofol induces the intrinsic apoptotic signaling pathway by the

release of reactive oxygen species (ORS).

Propofol may inhibit surgery-induced systemic inflammatory response syndrome throughout decreasing cell

concentrations of hypoxia-inducible factor 1 (HIF1A), which is elevated in the tumor’s hypoxic micro-environment

and promotes cell migration and invasion . Ecimovic et al.  demonstrated in vitro the role of NET-1

(neuroepithelial cell transforming gene-1) overexpression, a gene that is associated with tumor dissemination and

which decreases with propofol exposure .

1.2. Halogenated

It has been suggested that inhalation agents, for the most part, have a tumorigenic effect since they both inhibit

tumor cell apoptosis and stimulate tumor cell proliferation and migration. More specifically, in advanced breast

cancer, elevated caveolin-1 concentrations have been associated with lower survival. This protein has been linked

to higher resistance to apoptosis, migration and elevated invasivity in breast cancer cells. Ecimovic et al. 

analyzed, in vitro, the ability of sevoflurane to stimulate tumor cell proliferation, migration and invasion in patients

with positive (ER+) and negative (ER-) estrogen receptor breast cancer (with the latter not having invasive

capacity).

However, Kawaraguchi et al.  documented that isoflurane confers a protective effect on tumor cells in colon

cancer against TNF-mediated apoptosis (TRAIL or TNF-related apoptosis-inducing ligand) by interacting with

caveolin-1.

Sevoflurane reduces NK activity, thereby reducing immunosurveillance and favoring progression of

micrometastases. In contrast, a range of studies have been conducted to compare immunosuppression induced by

halogenated anaesthetics vs. general intravenous anaesthesia, with inconsistent results . Enlund

et al.  found no significant differences in 1-year and 5-year survival in a sample of 1837 breast cancer patients.

Kim et al.  compared propofol with a variety of halogenated agents (sevoflurane, desflurane, isoflurane and

enflurane), without significant differences. Recent retrospective studies  provide cumulative evidence of

the absence of significant differences between intravenous and inhalation anaesthetics in terms of recurrence or

survival.

2. Analgesics

[9] [10]

[11][12][13][14][15][16]

[17]

[18] [19]

[20]

[21]

[22]

[23][24][25][26][27][28]

[23]

[25]

[26][27][28]



Breast Cancer and Anaesthesia | Encyclopedia.pub

https://encyclopedia.pub/entry/12409 3/14

2.1. Opioids

Opioids have an immunosuppressive effect that influences cellular and humoral immunity, as they reduce NK

lymphocyte activity and proliferation, citokine production, phagocytic activity, and antibody release . The type

and degree of immunosuppression depends on the type, dose and time of exposure to the opioid. All synthetic

opioids reduce NK activity .

Morphine inhibits T and NK lymphocyte activity, promotes lymphocyte apoptosis, reduces toll-like 4 factor in

macrophages  and has angiogenic activity . In addition, the tumorigenic activity of morphine is mediated by

two independent mechanisms, namely: by direct stimulation of mu receptors in tumor cells, the overexpression of

which has been associated with poor prognosis, and indirectly by promoting neo-angiogenesis through metabolic

signaling pathways similar to those used by VEGF factor .

In breast tumor cells, fentanyl exhibits an antitumoral effect by reducing levels of proteins involved in cell apoptosis

and differentiation mechanisms (Bax, Bcl2, Oct4, Sox2, and Nanog) . Although tramadol is a µ-receptor agonist,

its analgesic effect is prevailingly mediated by the inhibition of noradrenaline and serotonin reuptake. Sacerdote et

al.  assessed the relationship between tramadol and immune response in patients with uterine carcinoma. The

authors found that tramadol not only inhibits but also stimulates NK lymphocyte activity. Thereupon, Xia et al. 

demonstrated, in vitro, in breast tumor cells that tramadol reduces tumor cell proliferation, migration and invasion

by up to 28 days through the inhibition of the α2-adrenergic receptor. In a retrospective study, Kim et al. 

observed lower rates of mortality and tumor recurrence in the group of breast cancer patients treated surgically

who received tramadol. This effect is conferred by the inhibition of tumor cell proliferation, induction of apoptosis,

and action on serotonergic receptors and transient receptor potential channel V1 or TRPV1.

2.2. Regional Anaesthesia and Local Anaesthetics

There is a variety of locoregional anaesthesia techniques in breast cancer surgery that have good analgesic

outcomes. Paravertebral block (PVB) is the most widely used technique, although it is associated with a higher risk

of severe complications. New techniques have been developed, with pectoral block type II having shown good

effectiveness, and having been employed in a similar context as PVB . Several studies have been published

comparing general anaesthesia and combined anaesthesia: five retrospective studies, two prospective studies and

a systematic review. These studies provide evidence of the beneficial effects of not using opioids and/or local

anaesthetics per se .

Exadaktylos et al.  published the first retrospective study assessing the outcomes of 129 patients with breast

cancer treated surgically, of whom 50 received combined anaesthesia (PVB+Propofol) and 79 balanced general

anaesthesia. The rate of recurrence was lower in the group that received combined anaesthesia. In contrast, a

recent systematic review conducted by Pérez-González et al.  did not show statistically significant differences

between combined and general anaesthesia.
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Local anaesthetics block afferent and efferent nerve response and effectively suppress sympathic stimulation

through the inhibition of hypothalamic–pituitary–adrenal (HPA) stimulation induced by surgical stress, thereby

reducing HPA activity .

Lidocaine has been proven to exert beneficial effects in vivo and in vitro, and it is associated with a reduction in

tumor cell proliferation, migration and invasion in breast, liver and lung cancer . Lidocaine inhibits the

proto-oncogen that releases Src, an intracellular non- tyrosine kinase protein that is involved in cell proliferation

and migration processes through ICAM-1 phosphorylation, which enables neutrophils to cross the endothelium and

increase immune response . It has been reported to have effects on other signaling pathways such as TRPV-6

inhibition  or DNA demethylation in breast cancer cells . Chang et al.  demonstrated in vitro that both

lidocaine and bupivacaine induce breast cancer cell apopotosis through the activation of caspases 7, 8 and 9. In

the same line, D’Agositino et al. showed that lidocaine inhibits cytoskeletal modification in breast cancer cells .

Evidence has been provided that lidocaine infiltration in the peritumoral region inhibits tumor growth by binding

EGFR . As for the immune system, lidocaine, at clinically relevant concentrations, stimulates the cytotoxic effect

of NK lymphocytes . A prospective, randomized trial conducted by Galoș et al. revealed that lidocaine reduced

neutrophil extracellular traps, a phenomenon that has been associated with tumor recurrence .

2.3. NSAIDs

The enzyme cyclooxygenase (COX-2) causes an increase in prostaglandins, which are involved in immune system

control and angiogenesis. Ketorolac is the most extensively studied NSAID in relation to cancer. It is a COX-1 and

COX-2 inhibitor that is commonly used in the perioperative period. Evidence from retrospective studies

demonstrates that perioperative administration of ketorolac reduces breast cancer recurrence by diminishing the

production of prostaglandins and VEGF. Forget et al. attempted to replicate these results in patients with breast

cancer at high risk of recurrence (triple negative, neutrophil/lymphocyte ratio ≥ 4)  in a prospective study  of

203 patients, without differences having been found between treatment groups.

3. Dexmedetomidine

Dexmedetomidine is a selective α2 agonist with sympatholytic and anti-inflammatory activity that reduces IL-6, IL-8

and TNF-α concentrations and increases anti-inflammatory cytokine IL-10 levels .

Despite its anti-inflammatory effect, a pro-tumoral activity is attributed to dexmedetomidine. Lavon et al. 

demonstrated in animal models that it promotes metastasis in breast, lung and colon cancer. This effect is credited

to the transient immunosuppression induced by dexmedetomidine, added to the effects of surgical stress and

changes in vascular patency.

In the same line, Xia et al.  investigated the effect of dexmedetomidine in breast cancer cells, in vitro and in vivo,

in mice and concluded that dexmedetomidine promotes tumor cell proliferation, migration and invasion through the
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inhibition of the α2/ERK adrenergic receptor pathway .

Cata et al.  performed a retrospective study involving 1404 patients with non-small lung cancer (NSCLC) treated

surgically to investigate a potential relationship between tumor recurrence and the use of dexmedetomidine. This

relationship was not confirmed. Indeed, the results showed a significant relationship between dexmedetomidine

and lower survival.

Beta-blockers and lipid lowering drugs are two of the main groups of drugs among patients undergoing a surgical

procedure.

4. Beta-Blockers

Beta-adrenergic receptors are found both in tumor cells and the immune system , and seem to play a key role in

carcinogenesis . Beta-blockers have been proven to be involved in angiogenesis and cellular neoproliferation

. Exposure to beta-agonists inhibits lymphocyte NK activity  and induces an increase in T-regulator

lymphocytes , leading to immunosuppression. Kang et al. documented that adrenergic stimulation activated the

MAP-kinase cascade and, more specifically, the DUSP1 cascade, which causes resistance to chemotherapy and

apoptosis . Recently, Zhou et al.  observed that propranolol prevented T-regulator lymphocyte elevation.

Another potential cellular signaling pathway is adrenergic activation of PI3K/AKT and HIF-1 α, which is also

inhibited by propranolol .

Contradictory results were obtained in five retrospective  and two cohort studies  assessing

recurrence in breast cancer patients after surgery due to the lack of a standard treatment administration protocol

.

5. Lipid Lowering Drugs

The increased prevalence of cardiovascular disease in the recent years has resulted in an increase in the use of

lipid lowering drugs, with statins being the most common pharmaceutical group. As a component of the cellular

membrane, cholesterol plays an essential role in cellular division; therefore, a reduction in extracellular cholesterol

should cause an inhibition of tumor cell proliferation. Cholesterol metabolites such as 27-hydroxycholesterol and

25-hydroxycholesterol may stimulate estrogen receptors (ERs) . Alikhani et al.  reported an increase in

breast tumor growth mediated by the PI3K/AKT pathway in hyperlipidemic mice.

Cholesterol favors a pro-inflammatory environment by the activation of macrophage toll-like receptors  and the

inhibition of CCR7 expression in dendritic cells, which explains their antigenic effects . On the other hand,

cholesterol modulates lymphocyte T activity through the liver X receptor (LXR) .

As for the use of statins, inconsistent results were obtained in six retrospective  and five

prospective studies  (four supporting its use and the remaining seven having not provided clinically
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relevant results). In contrast, the three meta-analyses retrieved  provide consistent evidence that

statins reduce breast cancer recurrence. However, these studies were conducted using non-standard methods,

and prospective randomized studies are needed.
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