

Organic Acids and Feeding

Subjects: **Agriculture, Dairy & Animal Science**

Contributor: Dhanushka Rathnayake

Because the application of antibiotic growth promoters (AGP) causes accelerated adverse effects on the animal diet, the scientific community has taken progressive steps to enhance sustainable animal productivity without using AGP in animal nutrition. Organic acids (OAs) are non-antibiotic feed additives and a promising feeding strategy in the swine and broiler industry. Mechanistically, OAs improve productivity through multiple and diverse pathways in: (a) reduction of pathogenic bacteria in the gastro-intestinal tract (GIT) by reducing the gut pH; (b) boosting the digestibility of nutrients by facilitating digestive enzyme secretion and increasing feed retention time in the gut system; and (c) having a positive impact and preventing meat quality deterioration without leaving any chemical residues. Recent studies have reported the effectiveness of using encapsulated OAs and synergistic mechanisms of OAs combinations in swine and broiler productivity. On the other hand, the synergistic mechanisms of OAs and the optimal combination of OAs in the animal diet are not completely understood, and further intensive scientific explorations are needed.

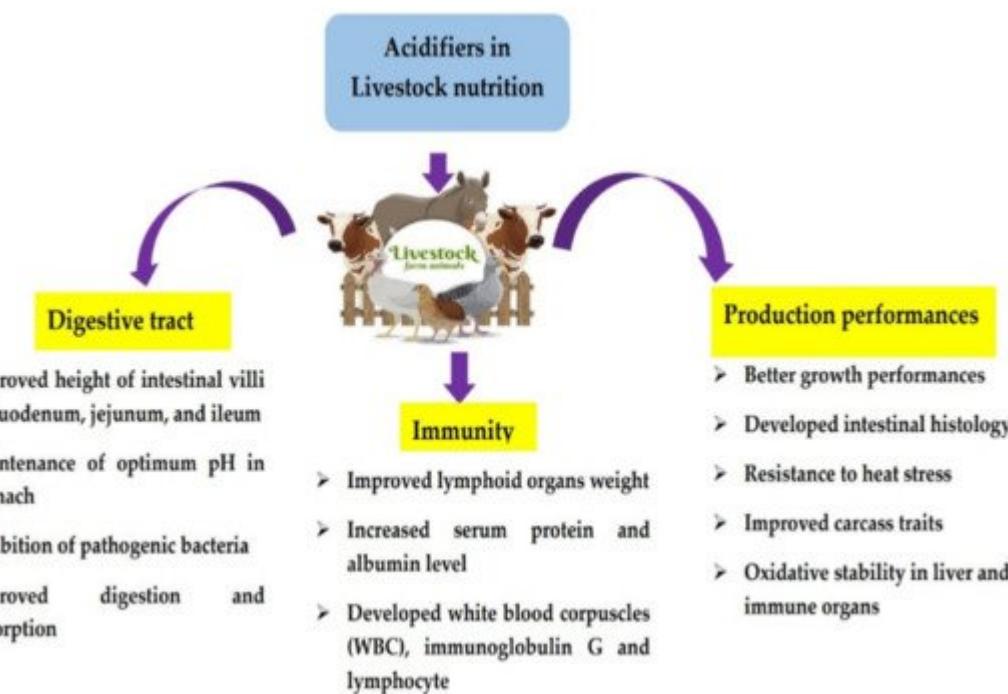
organic acids

feeding

swine

broilers

digestibility


meat quality

1. Introduction

The ultimate goal in the global livestock sector is to achieve enhanced quantitative and qualitative productive parameters. A few decades ago, enhanced production was gained by incorporating various antibiotic growth promoters (AGP), which resulted in improved feed efficacy, growth rate, and lower mortality and disease. On the other hand, the emergence of antimicrobial-resistant bacteria has led to a discussion regarding the global health problem. Consequently, the utilization of AGP was banned by the European Union. Thus, scientists and researchers have focused on sustainable potential antibiotic-free production systems in the poultry sector ^[1] and swine industry ^[2].

Researches have highlighted the effective utilization of organic acids (OAs), phytobiotics, probiotics, prebiotics, bacteriophages, and other numerous alternatives instead of antibiotics to establish appropriate health and production parameters of animals. As a group of chemicals, organic acids can be defined as carboxylic acids including fatty acids, which have the chemical structure of R-COOH with specific chemical characteristics. They can be categorized into three groups: (a) simple mono-carboxylic acids (acetic, formic, propionic, and butyric acids); (b) carboxylic acids containing hydroxyl group (malic, lactic, tartaric, and citric acids); and (c) carboxylic acids with double bonds (sorbic and fumaric acids) ^[3]. OAs produce effective responses owing to their antimicrobial properties, which can enhance the pH reduction rate in the GIT ^[4]. Consequently, the intestinal digestibility and mineral utilization were improved ^{[5][6]}. Acidifiers were incorporated into animal diets a few years earlier owing to

the presence of preservatives and nutritional characteristics [7][8]. Despite controlling the desirable growth rate of molds, fungi, and bacteria in animal feed, several studies have reported the potential ability of improving nutrition digestion and retention, intestinal health, and ultimate growth development of non-ruminant animals, including feed sanitizing characteristics [9][10][11]. Effective production parameters and health-promoting evidence have been discovered for numerous OAs, such as citric, fumaric, and formic acids and their salts [12]. Enhanced meat quality characteristics and growth performances were observed in broilers fed a diet supplemented with OAs, including 30% lactic, 25.5% benzoic, 7% formic, 8% citric, and 6.5% acetic acid [13]. Partanen and Morz [7] reported that incorporating OAs into the pig diet modulates the beneficial gut microbiota and improves the growth performance. A reduced gastric pH and retarded enterotoxigenic *E. coli* proliferation in the gut system occurred due to the inclusion of lactic acid into the pig diet. Thus, developed gut health led to optimal feed intake and weight gain of the animal [14]. Furthermore, supplementation of OAs with feedstuff will increase the stimulation rate of the nutrient digestion process [15]. The application of OAs in the livestock sector has produced numerous benefits in both economic and quality product perspectives in the livestock sector (Figure 1).

Figure 1. Various application and benefits of organic acids in the livestock sector [16].

Each organic acid has a distinguished range of pH, antimicrobial potential, pKa values, and membrane structure. Especially, a combination of OAs has various pKa values directly influencing the intestine pH due to the developed synergistic effect [17]. The most common OAs involved in animal nutrition are listed below (Table 1).

Table 1. Common organic acids involved in animal nutrition and their properties [16][18].

Acid	Chemical Name	Registration Number	Molecular Weight/GE (MJ/Kg)	Odor	pKa
Butyric	Butanoic Acid	-	88.12/24.8	rancid	4.82

Acid	Chemical Name	Registration Number	Molecular Weight/GE (MJ/Kg)	Odor	pKa
Citric	2-Hydroxy-1,2,3-Propanetricarboxylic Acid	E 330	192.1/10.2	odorless	3.13
Propionic	2-Propanoic Acid	1a297	74.08/20.6	pungent	4.88
Sorbic	2,4-Hexandienoic Acid	E 200	112.1/27.85	mildly acrid	4.76
Formic	Methanoic Acid	E 236	46.03/5.7	pungent	3.75
Acetic	Ethanoic Acid	E 260	60.05/14.6	pungent	4.76
Lactic	2-Hydroxypropanoic Acid	E 260	90.08/15.1	sour milk	3.83
Malic	Hydroxybutanedioic Acid	E 296	134.1/10.0	apple	3.40
Fumaric	2-Butenedioic Acid	2b08025	116.1/11.5	odorless	3.02
Benzoic	Benzene carboxylic acid	-	-	-	4.20

References

1. Nguyen, D.H.; Kim, I.H. Protected Organic Acids Improved Growth Performance, Nutrient Digestibility, and Decreased GES Emission Profiles. *Animals* 2020, 10, 416.

2. Tugnoli, B.; Giovagnoni, G.; Piva, A.; Grilli, E. From Acidifiers to Intestinal Health Enhancers: How OAAs have numerous benefits on the health and development of the gut system. Nevertheless, the mode of action is not completely understood. Their modes of action may be attributed partially to different factors, such as (A) mineral chelation and stimulation on intermediary metabolism; (B) inhibition of the development of pathogenic microbes; (C) facilitation of proper digestion due to low gastric pH and enhanced pepsin secretion and (D) reduction of gastric emptying rate and maintenance of endogenous enzymes secretion [4][19].

2.1. Effect of OAAs on Mineral Utilization and Nutrient Digestibility

Feed. *Asian Australas. J. Anim. Sci.* 2005, 18, 1048–1060.

OA anions form complexes with Mg, P, Ca, and Zn, improving digestion and minimizing the excretion of beneficial minerals from the body. Phytate phosphorous utilization occurs through OAAs administration by providing favorable pH conditions to convert phytase into hydrolyze phytate [20]. Bolling et al. [21] reported that citric acid facilitates the removal of attached minerals to phytate molecules, such as Ca, P, and Zn. Furthermore, it has been found that fumaric acid also can enhance the apparent absorption and retention of Ca, P, and Zn in the gastro-intestinal tract [19, 252–261].

The inclusion of OAAs into the diet can improve energy utilization for certain feedstuffs. In soybean meal, for instance, the lower metabolizable energy (ME) in soybean meal occurs due to retarded digestibility in the carbohydrate portion. However, the presence of endogenous α -(1,6)-galactosidase enzyme in the intestines will facilitate the proper digestion of carbohydrate portion in the soybean meal. Ao [23] reported that the inclusion of 2% citric acid increased the digestion process by enhancing the activity of the α -galactosidase enzyme. Moreover, by

© Mroż, Z.; Reese, D.E.; Øverland, M.; Van Diepen, J.T.M.; Kogut, J. The effects of potassium

diformate and its molecular constituents on the apparent ileal and fecal digestibility and retention of nutrients in growing finishing pigs. *Asian. Sci.* 2002, 80, 681–690.

Partanen, K.H.; Mroż, Z. Organic acids for performance enhancement in pig diets. *Nutr. Res. Rev.* 1999, 12, 117–145.

7. Mroż, Z.; Reese, D.E.; Øverland, M.; Van Diepen, J.T.M.; Kogut, J. The effects of potassium diformate and its molecular constituents on the apparent ileal and fecal digestibility and retention of nutrients in growing finishing pigs. *Asian. Sci.* 2002, 80, 681–690.

Effect of Different Organic Acid Inhibitors Treated with Moisture on the Performance of Poultry and its Master Thesis, University of Guelph, Guelph, ON, Canada, 1985. through the secretion of a greater level of chymotrypsinogen A, chymotrypsinogen B, procarboxy peptidase A, procarboxy peptidase B, and trypsinogen enzymes [25]. OAs inclusion also increased the proper absorption rate of nutrients in the GIT by increasing the G.; Costa, L.N.; Van Milgen, J.; et al. Long-term administration of formic acid to weaners: influence on intestinal microbiota, immunity parameters and growth performance. *Anim. Feed. Sci. Technol.* 2017, 232, 160–168.

2.2. Effect of OAs on Antimicrobial Activity and Pathogenic Bacteria

10. Nwankwo, E.K.; Assam, E.D.; Ekere, P.C.; Utot, U.E. Effect of organic acid treated diets on growth, apparent nutrient digestibility and faecal moisture of broiler chickens. *Niger. J. Anim. Prod.* Both animals and plants have symbiotic relationships with various microbes to survive in the environment through 2016, 43, 218–223. an active defense system against pathogens and to regulate the metabolism associated with hormones. On the 11th Huang, G.; Song, P.; Fang, P.; Han, G.; Thacker, P.; et al. Dietary Sodium Butyrate Decreases Host-Pathogen Diarrhea by Modulating Intestinal Permeability and Changing the Bacterial As can alter the 12. Yang, X.; Xin, H.; Yang, C.; Yang, X. Impact of essential oils and organic acids on the growth environment to beneficial microbes while preventing the proliferation of pathogens [7][29][30]. OAs can be divided into performance, digestive functions and immunity of broiler chickens. *Anim. Nutr.* 2018, 4, 388–393. two groups based on the microbial ameliorate capacity in the GIT (Figure 2).

13. Fascina, V.B.; Sartori, J.R.; Gonzales, E.; De Carvalho, F.B.; De Souza, I.M.G.P.; Polycarpo, G.D.V.; Stradiotti, A.C.; Pelícia, V.C. Phytogenic additives and organic acids in broiler chicken diets. *Rev. Bras. Zootec.* 2012, 41, 2189–2197.

14. Tsiloyiannis, V.K.; Kyriakis, S.C.; Vlemmas, J.; Sarris, K. The effect of organic acids on the control of porcine post-weaning diarrhea. *Res. Vet. Sci.* 2001, 70, 287–293.

15. Dittoe, D.K.; Ricke, S.C.; Kless, A.S. Organic Acids and Potential for Modifying the Avian Gastrointestinal Tract and Reducing Pathogens and Disease. *Front. Vet. Sci.* 2018, 5, 216. 1. Indirectly controlling pathogens by decreasing the pH in the GIT

16. Pearlin, B.V.; Muthuvel, S.; Govidasamy, P.; Villavan, M.; Alagawany, M.; Farag, M.R.; Dhama, K.; Gopi, M. Role of acidifiers in livestock nutrition and health: A review. *J. Anim. Physiol. Anim. Nutr.* 2020, 104, 558–569.

17. Ravindran, V.; Kornegay, E.T. Acidification of weaner pig diets: A review. *J. Sci. Food Agric.* 1993, 62, 313–322. **Figure 2.** Two different mechanisms of organic acids on altering the pH of the GIT and their impact on pathogens [15].

18. Nguyen, D.H.; Seok, W.J.; Kim, I.H. Organic Acids Mixture as a Dietary Additive for Pigs—A Non-disassociated OAs enter the cytoplasm through the semipermeable membrane of the microorganism.

Thereafter, OAs release their protons (H^+), and the cytoplasm pH decreases gradually. The enzymes involving 19. De Lange, C.; Pluske, J.; Gong, J.; Nyachoti, C. Strategic use of feed ingredients and feed reactions, such as nutrient transportation and glycolysis signal transductions of the microbes, are curtailed. additives to stimulate gut health and development in young pigs. *Livest. Sci.* 2010, 134, 124–134. Consequently, an energy deficiency occurs to maintain the normal pH [31]. Owing to the acidic conditions in the

20. Dang, B.; Dang, A.; Dang, Q. As is greater than the blood pH conditions. The effect of microbial pH, most bacteria acids and their interaction on diets for young pigs. *Livest. Sci.* 2000, 67, 110–112.

21. Boling, S.D.; Weibel, D.M.; Mavromichalis, I.; Parsons, C.M.; Baker, D.H. The effects of citric acid multiplication of pH-sensitive bacteria [32]. on phytate-phosphorus utilization in young chicks and pigs. *J. Anim. Sci.* 2000, 78, 682–689.

28. Korchegarnik, M.; Rehete, X. Formic acid as a feed additive in pig digestibility. *Pig News Inf.* 1982, over of 3250.

29. Korchegarnik, M.; Rehete, X. Formic acid as a feed additive in pig digestibility. *Pig News Inf.* 1982, over of 3250.

30. Korchegarnik, M.; Rehete, X. Formic acid as a feed additive in pig digestibility. *Pig News Inf.* 1982, over of 3250.

31. Ao, T. *Exogenous Enzymes and Organic Acids in the Nutrition of Broiler Chicks: Effects on Growth Performance and In Vitro and In Vivo Digestion*. Ph.D. Thesis, University of Kentucky, Lexington, KY, USA, 2005.

32. Afsharmanesh, M.; Pourreza, I. Effects of calcium, citric acid, ascorbic acid, vitamin D₃ on the efficacy of microbial phytase in broiler starters fed wheat-based diets. I. Performance, bone mineralization and ileal digestibility. *Int. J. Poult. Sci.* 2005, 1, 418–424.

33. Adil, S.; Bahday, T.; Bhat, G.A.; Mir, M.S.; Rehman, M. Effect of Dietary Supplementation of Organic Acids on Performance, Intestinal Histomorphology, and Serum Biochemistry of Broiler Chicken. *Vet. Med. Int.* 2010, 2010, 479485.

34. Because OAs have both bactericidal and bacteriostatic properties, Luckstadt and Mellor [35] sketched out the mode of action of OAs on G⁺ bacteria as follows: (1) Lipophilic undissociated OAs penetrate the G⁺ bacteria cytoplasm (Salmonella). (2) OAs release H⁺ ions, which reduces the cellular pH, and the enzyme-based microbial metabolism tends to decrease. (3) To restore the normal cytoplasmic pH, the cell is forced to discard H⁺ ions through the cell membrane via the H⁺-ATPase pump. (4) Ultimately, G⁺ bacteria proliferation is gradually impeded when exposed to OAs for sometime (Figure 3).

35. Van Der Sluis, W. Water quality is important but often overestimated. *World Poult.* 2002, 18, 26.

36. Omogbenigun, F.O.; Nyachoti, C.M.; Sliominski, B.A. The effect of supplementing microbial phytase and organic acids to a corn-soybean based diet fed to early-weaned pigs. *J. Anim. Sci.* 2003, 81, 1806–1815.

37. Skřivanová, E.; Marounek, M.; Benda, V.; Březina, P. Susceptibility of *Escherichia coli*, *Salmonella* sp and *Clostridium perfringens* to organic acids and monolaurin. *Vet. Med. Praha* 2006, 51, 81–88.

38. Biagi, G.; Piva, A.; Hill, T.; Schneider, D.K.; Crenshaw, T.D. Low buffering capacity diets with added organic acids as substitute for antibiotics in diets for weaned pigs. In Proceedings of the 9th International Symposium on Digestive Physiology in Pigs, Banff, AB, Canada, 14–18 May 2003; Ball, R., Ed.; University of Alberta: Banff, AB, Canada, 2003; pp. 217–219.

39. Pinheiro, V.; Mourao, J.L.; Alves, A.; Rodrigues, H.; Salvedra, M.J. Effect of Zinc bacitracin on the performance, digestibility and caecal development of growing rabbits. In Proceedings of the 8th World Rabbit Congress, Puebla, Mexico, 7–10 September 2004; pp. 942–947.

40. Mroz, Z.; Koopmans, S.J.; Bannink, A.; Partanen, K.; Krasucki, W.; Overland, M.; Radcliffe, S. Carboxylic acids as pH regulators and gut growth promoters in non-ruminants. In *Biology of Nutrition in Growing Animals*; Mosenthin, R., Zentek, J., Zebrowska, T., Eds.; Elsevier: Edinburgh, UK, 2006; Volume 3, pp. 81–133.

41. Stratford, M.; Eklund, T. Organic acids and esters. In *Food Preservatives*; Springer: Boston, MA, USA, 2003; pp. 48–84.

42. Suiryanrayna, M.V.A.N.; Ramana, J.V. A review of the effects of dietary organic acids fed to swine. *J. Anim. Sci. Biotechnol.* 2015, 6, 45.

34. Dib, B.; MdeBrito, R. Use of organic acids as a model to study the impact of gut microflora on *Escherichia spp.*) [36]. nutrition and metabolism. *J. Appl. Poult. Sci.* 2002, 11, 453–463.

35. Luckstadt, C.; Mellor, S. The use of organic acids in animal nutrition, with special focus on dietary This anion model of OAs can vary upon two factors: (1) the lipophilic nature of the OAs, which can transmit through potassium diformate under European and Austral-Asian conditions. *Recent Adv. Anim. Nutr. Aust.* 2011, 18, 123–130. [37]

36. Gauthier, R. Intestinal health, the key to productivity: The case of organic acids. In Proceedings of the XXVII Convention ANECA-WPDC, Puerto Vallarta, Mexico, 3–6 April 2002.

3. Effect of OAs in Swine and Broiler

37. Hirshfield, I.N.; Terzulli, S.; O'Byrne, C. Weak Organic Acids: A Panoply of Effects on Bacteria.

3.1. Supplementation of OAs on the Growth Performance of Swine and Broilers

38. Studies have found that the optimal dosage of OAs can enhance the productivity of pigs compared to AGPs. Increased growth performance gain to feed (G:F) and feed intake (FI) was observed in piglets supplemented with

39. an OAs mixture (benzoic, fumaric, lactic, propionic, and citric) [39]. Because benzoic acid in the diet can increase

40. Walsh, M.C.; Sholly, D.M.; Hinson, R.B.; Saddoris, K.L.; Sutton, A.L.; Radcliffe, J.S.; Odgaard, R.; the butyric acid concentration in the GIT, the gut microflora ameliorating process occurs by acting as an energy Murphy, J.; Richert, B.T. Effects of water and diet acidification with and without antibiotics on source agent in gut epithelial cells [40]. The feed conversion ratio (FCR) was increased by 10%, and the average weanling pig growth and microbial shedding. *J. Anim. Sci.* 2007, 85, 1799–1808.

41. daily gain (ADG) was increased by 3% when pigs were administered fumaric and citric acids at four weeks of age

42. Katherine Bal [41] zero Acid as Feed Additive in Pig Nutrition: Effects of Diet Composition and Performance, Digestion and Ecological Aspects. Ph.D. Thesis, ETH Zurich, Switzerland, in 2009

43. pigs compared to pigs fed with dietary zinc oxide inclusion. Feeding weaning pigs with 0.8% fumaric acids reduced

44. Falkowski, J.F.; Aherne, F.X. Fumaric and Citric Acid as Feed Additives in Starter Pig Nutrition. *J. Anim. Sci.* 1984, 58, 935–938.

45. fumaric acid addition did not affect the microflora composition in the GIT. According to the study conducted by Htto

46. Kung, Y.; Wang, X.; Zhang, Y.; Song, Y.; Zhang, X.; Lin, Y.; Che, J.; Xu, S.; Wu, D.; Xue, B.; et al. Effects of dietary combinations of organic acids and medium chain fatty acids as a replacement of

47. zinc oxide on growth, digestibility and immunity of weaned pigs. *Anim. Feed Sci. Technol.* 2015, 208, 145–157.

48. Furthermore, a trend of developed growth performance in response to the inclusion of OAs combined with salts

49. combination was more reliable in growing-finishing pigs than in weaning pigs [6]. Canibe et al. [46] and Partanen et

50. al. [47] reported increased ADG and G:F ratios in pigs fed a diet containing formic acid, ammonium formate, and

51. formic acids. A combination of phytogenic feed additives with organic acids (10% citric, 10% sorbic, 6.5% malic, and 13.5% fumaric acid) also improved the BW and ADG of weaning pigs. Moreover, Yang et al. [48] reported that a

52. Risley, C.R.; Kornegay, E.T.; Lindemann, M.D.; Wood, C.M.; Eigel, W.N. Effect of feeding organic high abundance of *Limosilactobacillus mucosae* also occurred compared to the control treatment. Nevertheless,

53. acids on selected intestinal content measurements at varying times post weaning in pigs. *J. Anim. Sci.* 1992, 70, 196–206.

54. weaning pigs, but it enhanced the G: F [46]. The above dissimilarities among the different studies might be related

55. to the inclusion of OAs on the growth performance of weaned pigs (Table 2). Therefore, further research of OAs on the growth performance of weaned pigs is required.

56. 46. Canibe, N.; Højberg, O.; Højsgaard, S.; Jensen, B.B. Feed physical form and formic acid addition

57. In the broiler growth performance, the utilization of OAs has not gained as much attention as in the swine industry.

58. to the feed affect the gastrointestinal ecology and growth performance of growing pigs. *J. Anim.*

59. The rapid metabolism process in crops to the gizzard (foregut) causes a deficiency of OAs availability and

60. retards the growth performance [33]. However, Fascina et al. [13] reported that the administration of OAs

61. combination (30% lactic, 25.5% benzoic, 7% formic, 8% citric, and 6.5% acetic acid) improved the BW, weight gain

47. Partan, E.C.R.; Sijander, R.; Rashed, A.; Alavuunkula, T.; Somerk, B.; Foss, M. Performance of growing-finishing (pigs) fed medium or high-fiber diets supplemented with avitomycin [49], formic acid [50] or citric acid [51] compared to the control. *Anim. Prod. Syst.* 2002, 23, 139–152.

48. Yang, C.; Zhang, L.; Cao, G.; Feng, J.; Yue, M.; Xu, Y.; Dai, B.; Han, Q.; Guo, X. Effects of dietary Ragaa [51] also indicated that in 42 days old broilers, the BWG and FCR were enhanced in those fed 3% organic supplementation with essential oils and organic acids on the growth performance, immune acids (butyric, fumaric, and lactic acid). Hence, the higher BWG was achieved through direct antimicrobial effect, system, fecal volatile fatty acids, and microflora community in weaned piglets. *J. Anim. Sci.* 2019, 97, 133–143.

49. Adil, S.; Bandy, T.; Bhat, G.A.; Salahuddin, M.; Raghu, M.; Shanaz, S. Response of Broiler Chicken to Dietary Supplementation of Organic Acids. *J. Cent. Eur. Agric.* 2021, 12, 498–508.

50. Hassan, H.M.A.; Mohamed, M.A.; Youssef, A.W.; Hassan, E.R. Effect of using organic acids to substitute antibiotic growth promoters on performance and intestinal microflora of broilers. *Asian*

5	Dosage and Organic Acid/Acids	Growth Phase	Growth Performances			Intestinal/Fecal Microbial Counts (CFU)	Other Parameters	References
			BWG/FBWADFI	G:F	5			
Swine								
5	0.1% and 0.2% fumaric, citric, malic, MCFA (capric and caprylic)	Weaning	S	NS	S	<i>E. coli</i> ; S <i>Lactobacilli</i> ; S <i>Clostridium</i> ; S <i>Salmonella</i> ; S	<ul style="list-style-type: none"> Reduced diarrhea score, fecal ammonia, and acetic acid emission 	Yang et al., 2018 [54]
5	0.1% and 0.2% fumaric, citric, malic, MCFA (capric and acrylic)	Growing	S	NS	S	<i>Lactobacilli</i> ; S <i>E. coli</i> ; NS	-	Upadhyay et al., 2016 [55]
5	0.15% benzoic, fumaric, calcium formate	Weaning	S	NS	NS	<i>E. coli</i> ; NS <i>Lactobacilli</i> ; NS	<ul style="list-style-type: none"> Increased villus height in duodenum and jejunum Increased butyric acid level in the cecum and valeric acid level in the colon 	Xu et al., 2017 [56]
5	1.1% acetic, propionic, phosphoric, citric acid	Weaning	NS	NS	NS	<i>Lactobacilli</i> ; NS <i>E. coli</i> ; NS <i>Coliforms</i> ; NS	<ul style="list-style-type: none"> Reduced pH level in colon Retardation of <i>Coliforms</i> proliferation 	Namkung et al., 2004 [57]

56. Wei, X.; Bottoms, K.; Stein, H.; Blavi, L.; Bradley, C.; Bergstrom, J.; Knapp, J.; Story, R.; Maxwell, C.; Tsai, T.; et al. Dietary Organic Acids Modulate Gut Microbiota and Improve Growth Performance of Nursery Pigs. *Microorganisms* 2021, 9, 110.

5	Dosage and Organic Acid/Acids	Growth Phase	Growth Performances BWG/FBWADFI G:F			Intestinal/Fecal Microbial Counts (CFU)	Other Parameters	References	ility, lets. J.
6	0.4% and 0.2% fumaric, lactate, citric, propionic, benzoic acid	Weaning	NS	NS	NS	<i>E. coli</i> ; NS	-	Walsh et al., 2007 [39]	Ince, igs.
6	0.5% benzoic acid	Weaning	S	S	S	<i>Lactobacilli</i> ; S	-	Wei et al., 2021 [58]	erent sion in
6							<ul style="list-style-type: none"> Reduced the number of aerobic, total anaerobic, lactic acid-forming, and gram-negative bacteria in the stomach 		ale 08,
6	0.5, 1% benzoic acid	Weaning	S	NS	NS	NE	<ul style="list-style-type: none"> Reduced gram-negative bacteria and acetic acid in the duodenum Reduced gram-negative bacteria in ileum 	Kluge et al., 2005 [59]	;; ining
6							<ul style="list-style-type: none"> Decreased ileal <i>E. coli</i> bacteria level Did not exert negative impacts on GIT pH level and immunity 	Li et al., 2008 [60]	er, acids
6	0.5% butanoic, fumaric, benzoic acid	Piglets	S	NS	S	<i>Lactobacilli</i> ; NS <i>E. coli</i> ; NS			cone, oils
6	0.1% fumaric, citric, malic, MCFA (capric and caprylic)	Finishing	S	NS	S	<i>Lactobacilli</i> ; NS <i>E. coli</i> ; NS	<ul style="list-style-type: none"> Reduced feces H₂S gas emission 	Upadhyay et al., 2014 [61]	logy Fed
6	0.85% formic, benzoic, sorbic, Ca-butyrate	Growing male pigs	NS	NS	NS	<i>E. coli</i> ; S <i>Lactobacilli</i> ; S	<ul style="list-style-type: none"> Lower level of <i>Coliforms</i>, <i>Enterococci</i>, and lactic acid bacteria in jejunum and colon descendens 	Øverland et al., 2007 [62]	: Acids and

69. Sabour, S.; Tabeidian, S.A.; Sadeghi, G. Dietary organic acid and fiber sources affect performance, intestinal morphology, immune responses and gut microflora in broilers. *Anim. Nutr.* 2019, 5, 156–162.

70. Fathi, R.; Samadi, M.S.; Qotbi, A.A.; Seidavi, A.; Marín, A.L.M. Effects of feed supplementation with increasing levels of organic acids on growth performance, carcass traits, gut microbiota and

Reference	Dosage and Organic Acid/Acids	Growth Phase	Growth Performances			Intestinal/Fecal Microbial Counts (CFU)	Other Parameters	References
			BWG/FBW	ADFI	G:F			
7	0.5% benzoic acid	Weaning	S	S	S	<i>E. coli</i> ; NS <i>Lactobacilli</i> ; NS	<ul style="list-style-type: none"> Reduced diarrhea in weaning pigs 	Papatsiros et al., 2011 [63]
7	0.14% and 0.64% formic acid	Weaning	S	S	NS	<i>Lactobacilli</i> ; S	<ul style="list-style-type: none"> Higher microbiota diversity in 0.64% dosage 	Luise et al., 2017 [64]
Broilers								
7	0.3% and 0.4% calcium formate, calcium propionate 0.3, 0.4% ammonium formate, ammonium propionate	Finishing	S	NS	S	NE	<ul style="list-style-type: none"> Reduced the ileal total bacterial count Improved villi length 	Saleem et al., 2020 [64]
7	1% formic, lactic, propionic, citric acid	Finishing	S	NS	NS	NE	<ul style="list-style-type: none"> Enhanced V: C in GIT Increased water consumption during 15–22 days 	Ali et al., 2020 [65]
7	0.5% citric, sorbic, synthetic essential oil	Finishing	NS	NS	NS	<i>E. coli</i> ; NS <i>Enterococci</i> ; S <i>Clostridium</i> ; NS <i>Enterobacteriaceae</i> ; NS	<ul style="list-style-type: none"> Increased villi height, crypt depth, number of villi, mucosa thickness, and villi area 	Stamilla et al., 2020 [66]
7	0.15% formic, lactic, citric, malic, tartaric, phosphoric acids	Finishing	S	S	S	<i>Lactobacilli</i> ; S <i>E. coli</i> ; S	<ul style="list-style-type: none"> Enhanced inhibitory action owing to organic acid 	Goh et al., 2020 [67]

8. Guggenbuhl, P.; Séon, A.; Quintana, A.P.; Nunes, C.S. Effects of dietary supplementation with benzoic acid (VevoVitall®) on the zootechnical performance, the gastrointestinal microflora and the ileal digestibility of the young pig. *Livest. Sci.* 2007, 108, 218–221.

81. Guggenbuhl, P.; Séon, A.; Quintana, A.P.; Nunes, C.S. Effects of dietary supplementation with benzoic acid (VevoVitall®) on the zootechnical performance, the gastrointestinal microflora and the ileal digestibility of the young pig. *Livest. Sci.* 2007, 108, 218–221.

Reference	Dosage and Organic Acid/Acids	Growth Phase	Growth Performances			Intestinal/Fecal Microbial Counts (CFU)	Other Parameters	References	Stability
			BWG/FBW	ADFI	G:F				
8	0.3% formic, acetic, propionic, ammonium formate	Finishing	S	NS	NS	NE	<ul style="list-style-type: none"> Increased SCFAs level in the cecum Increased jejunal goblet cell density and ileal villus height 	Dai et al., 2021 [68]	acid on r
8	0.1% lactic, citric, acetic, formic, propionic, phosphoric, and sodium butyrate	Finishing	S	NS	S	<i>Lactobacilli</i> ; S <i>Coliforms</i> ; NS	<ul style="list-style-type: none"> Increased jejunum villus height Enhanced humoral immune response 	Sabour et al., 2018 [69]	re of
8	0.3, 0.5% formic, propionic acid	Finishing	S	NS	S	<i>Lactobacilli</i> ; S <i>E. coli</i> ; S	<ul style="list-style-type: none"> Lower duodenal pH High immune response against Newcastle disease, infectious bronchitis 	Fathi et al., 2016 [70]	use
8	0.06% fumaric, calcium format, calcium propionate, potassium sorbate, hydrogenated vegetable oil	Finishing	S	S	S	<i>Lactobacilli</i> ; S <i>Salmonella</i> ; S	<ul style="list-style-type: none"> Increased dressing percentage and bursa weight 	Hassan et al., 2010 [50]	organic , and
9	0.2, 0.4, and 0.6% butyric acid	Finishing	S	NS	S	<i>E. coli</i> ; S	<ul style="list-style-type: none"> pH reduction of upper GIT Increased villus length and crypt depth in the duodenum 	Panda et al., 2009 [71]	amino
92	including 10% malic, 13% citric, and 17% fumaric acids, phenyllactic acid on growth performance, nutrient digestibility, microbial shedding, and blood profile in pigs	Wang, H.P.; Yoo, J.S.; Lee, J.H.; Jang, H.D.; Kim, H.J.; Shin, S.O.; Seong, S.I. <i>Effects of phenyllactic acid on growth performance, nutrient digestibility, microbial shedding, and blood profile in pigs</i> . <i>J. Anim. Sci.</i> 2009 , <i>87</i> , 3235–3243.	Long, J.X.; Xu, Y.; Pan, T.D.; Wang, Q.; Wang, M.M.; Jia, J.; Han, Y.; Yuan, Y. <i>Effects of organic acids as antibiotic substitutes on performance, selected immunity, intestinal morphology and microbial flora in weaned pigs</i> . <i>Anim. Feed. Sci. Technol.</i> 2018 , <i>235</i> , 32.	igs. lusion is ed OAs,					

Dosage and Organic Acid/Acids	Growth Phase	Growth Performances			Intestinal/Fecal Microbial Counts (CFU)	Other Parameters	References
		BWG/FBW	ADFI	G:F			
0.5, 1, 1.5, and 2% citric, lactic, phosphoric acid	Finishing	[55] S	NS	S	<i>E. coli</i> ; S <i>Salmonella</i> ; S	<ul style="list-style-type: none"> 2% OAs blend enhanced the carcass yield 1.5%, 2% OAs blend increased the liver weight 	Sultan et al., 2015 [72]
0.6% formic acid	Finishing	S	NS	S	<i>E. coli</i> ; S (in crop)	<ul style="list-style-type: none"> Higher digestibility of crude protein, higher dressed yield, and lower fat content in carcass 	Panda et al., 2009 [73]
2% butyric, fumaric, lactic, and 3% butyric, fumaric, lactic acid	Finishing	S	NS	S	[86]	<ul style="list-style-type: none"> Increased villus height in the small intestines Enhanced serum calcium and phosphorus concentrations 	Adil et al., 2010 [25]
0.2% propionic, 0.3% butyric acid	Finishing	S	NE	S	[87] NE	<ul style="list-style-type: none"> Increased tibia weight, tibia length 	Lakshmi and Sunder., 2015 [74]

from meat quality, agronomic results with microbial protease. The non-significant impact on the AID of CP and amino acids (AA) might be associated with the formation of complexes among citric acids with Ca and the subsequent decrease in binding ability with phytate allowing easy hydrolyzation by the enzymes.

Post-Slaughter Parameters and Meat Composition of Broiler Chickens/Wpływ zakwaszaczza diety na mase ciała, śmiertelność, wydajność rzeźna i skład masy kurczaków rzeźnych. Ann. Anim. Sci.

Table 3. Effect of organic acids combination on nutrient digestibility of swine and broilers.
BW, body weight; gain; FBW, final body weight; ADFI, average daily feed intake; G: F, gain to feed ratio; S,

Dosage and Organic Acid/Acids	Growth Phase	Digestibility				Reference
		DM	N	E	CP	
Swine						
0.2% fumaric, citric, malic, capric, and caprylic acid	Growing	S	S	S	S	Hossain et al., 2011 [77]
0.05% citric, sorbic acid	Growing	S	NS	S	NC	Cho et al., 2014 [91]
2% benzoic acid	Lactating sows	S (OM)	NE	NE	S	Kluge et al., 2010 [82]
0.1% and 0.2% fumaric, citric, MCFA	Finishing	S	S	S	NE	Upadhyaya et al., 2014 [75]

condition in chicken meat used for commercial meat processing and its effect on roasted chicken breast. J. Anim. Sci. Technol. 2016, 58, 27.

ID	Dosage and Organic Acid/Acids	Growth Phase	Digestibility				Reference	Notes
			DM	N	E	CP		
10	0.5% phenyllactic acid	Weaning	S	S	NE	NE	Wang et al., 2009 [92]	, N.; Al- ion on 44,
10	0.3% formic, acetic, propionic, MCFA	Weaning	S (DM) NS (OM)	NS	NS	NS	Long et al., 2018 [93]	Acid Broiler
10	0.5% formic, propionic, lactic, citric, sorbic acid	Post-weaning	NS	NS	NS	NS	Gerritsen et al., 2010 [94]	
10	300 mEq acid/kg formic, n-butyric acid	Growing	S	S	S	S	Mroz et al., 2000 [95]	allapura, nic acid drawal -455.
10	0.15% citric acid	Lactating sows	NE	NE	NE	S	Liu et al., 2014a [78]	and
10	0.2% fumaric, citric, malic, capric, caprylic acid	Lactating sows	S	S	S	NE	Devi et al., 2016 [96]	
Broilers								
11	0.2% formic, propionic acid	Finishing	NS	NE	NE	S	Emami et al., 2013 [87]	acids ..
	0.5% formic acid	Finishing	NS	NE	NE	NS	Hernández et al., 2006 [84]	
	0.25, 0.5, and 0.75% formic acid	Finishing	NS	NE	NE	S	Ndelekwute et al., 2015 [97]	
	5000ppm and 10,000ppm formic acid	Finishing	S	NE	NE	S	Garcia et al., 2007 [84]	
	0.25% acetic, butyric, citric, formic acid	Finishing	S	NE	NS	S	Ndelekwute et al., 2019 [98]	
	1, 2, and 3% citric acid	Finishing	NE	NE	S	S	Ghazalah et al., 2011 [52]	
	0.5, 1, and 1.5% fumaric acid	Finishing	NE	NE	S	S	Ghazalah et al., 2011 [52]	
	0.25, 0.5% formic acid	Finishing	NE	NE	NS	S	Ghazalah et al., 2011 [52]	
	0.25, 0.5, and 0.75% acetic acid	Finishing	NE	NE	S	NS	Ghazalah et al., 2011 [52]	nal diets. mption of

quality meat has gained an important place in the food industry. Upadhyaya et al. [75] reported that supplementation of an OAs blend (consisting of fumaric, citric, malic, and MCFA) did not have adverse effects or improvements in the meat color, pH, cooking loss, drip loss, and water holding capacity (WHC). Similarly, Cho et al. [91] reported that the administration of a microencapsulated OAs combination, including citric and sorbic acids, did not significantly affect the meat color, pH, sensory attributes (color, firmness, marbling), cooking loss, and WHC. In contrast, the inclusion of 0.05 and 0.1% fumaric, citric, malic, and MCFA resulted in lower drip loss in pork (22.05%) except for any differences in meat color, sensory evaluation, cooking loss, pH, and WHC [99]. Jansons et al. [100] reported a

higher protein content (21.94%) in *longissimus lumborum* muscle tissues and lower cholesterol content (51.1 mg/kg⁻¹) in pork after the addition of formic, acetic, citric, phosphoric acid along with phytogenic feed additives to the diet. This might be attributed to the synergistic effect and the presence of antioxidant compounds in the feed. However, further investigations will be needed to determine the possible mode of actions associated with the meat quality characteristics by introducing OAs to the animal diet.

Brzóska et al. [101] reported that the supplementation of OAs to a broiler diet resulted in no significant influence on breast muscle content and leg muscle weight. The chemical constituents of the leg meat, including DM, protein, and fat content, also did not vary due to OAs application. Nevertheless, Jha et al. [102] reported that the inclusion of OAs (formic + propionic acid, formic + citric acid, formic + sorbic, and formic+ lactic acid) enhanced the meat thigh weight (29.03%), back weight (53.4%), wings weight (31.27%), and breast weight (34.57%) compared to the control group. On the other hand, they did not evaluate any other meat quality parameters regarding OAs inclusion. Supplementation at the recommended dosage of an acetic, butyric, formic, phosphoric, lactic acid blend did not have significantly favorable results on carcass pH, shear force, WHC, cooking loss, and meat color values, but the TBARS value was increased significantly in birds fed with an OAs mixed diet (2.01 nmol MDA/mg) as compared with control group (1.10 nmol MDA/mg). This suggests that a higher fat content facilitated a higher lipid oxidation process in meat [103]. Meat pH has a significant influence on WHC, meat color, juiciness, tenderness, and shelf-life. The changes of meat pH result from post-mortem metabolism and the conversion of glycogen into lactic acid [104]. In contrast, at a lower pH range (pH < 5.8), broiler meat exhibited a pale, soft, and exudative (PSE) condition, which is considered a degraded meat quality parameter compared to meat exposed to higher pH levels (pH > 5.8) [105]. Sugiharto et al. [106] found that a higher meat pH (6.7%) in broilers occurred in a diet administered with 0.1% formic and 0.3% butyric acid compared to the control group. El-Senousey et al. [107] presented a possible reason for the OAs and higher meat pH occurrence: the decline in post-mortem muscle glycolysis inhibited the decrease in muscle pH after slaughter. Furthermore, lower drip loss and a lightness value were reported in the diet combined with both formic and butyric acid but decreased due to the single administration of butyric acid. This might be due to the distinctive characteristics of each OA and the metabolic activities of each associated with specific pKa. Menconi et al. [108] reported less drip loss (65.85%) in broiler meat with feeding blends of lactic, tannic, caprylic, propionic, acetic acids, and butyric acid. Nevertheless, inconsistent results were obtained by Attia et al. [109], who reported a decrease in WHC (26.45%) in broiler meat owing to the supplementation of citric and fumaric acids. These results were attributed to differences in the OAs type, dosage, and experimental environment.

Nutritional quality of meat can also be influenced by the feeding strategies. Akbar et al. [110] observed a significantly higher PUFA content and lower SFA proportion of the birds fed a diet supplemented with organic acid salts (1% calcium propionate), which is beneficial, from the human nutrition point of view, as lower saturated fatty acid (SFA) and higher (PUFA) may positively influence human health. Furthermore, a lower cholesterol content was also reported in the diet containing dietary OAs.