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Ecosystem disturbances and resulting decreases of host species richness have been associated with the emergence of
zoonotic diseases. Among vertebrates, rodents are important reservoirs of numerous viruses, including some with
significant impacts on public health. Exploring the viral diversity in Neotropical rodents, we provide significant insights into
zoonotic viruses in Amazonia, and emphasize that habitats and host’s dietary ecology drive viral diversity. Linking richness
and abundance of viruses to the ecology and responses to habitat disturbance of their hosts should be starting points for
a better understanding of viral emergence, prediction of at-risk situation, and implementation of early control and
mitigation measures.
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| 1. Introduction

Viruses conquered all living systems, infecting microbes and more complex organisms, such as plants, invertebrates, and
vertebrates. Their small genomes with high mutation rates X! give them the ability to evolve and adapt quickly to new
environments and potentially the ability to infect new hosts. The development of metagenomic approaches [ improved
knowledge of the extent of viral diversity and of the host spectra of several viral families &, led to the discovery of new
viral genotypes, helping understand their evolutionary history &l But a large number of viral species remain unknown and
many biomes continue to be unexplored &, In the context of natural habitat disturbances, the disruptions of population
dynamics favor contacts between species, cross-species transmissions, spill-over, amplification, spread of viruses, and
increased contacts with wild fauna and may lead to the emergence of infectious diseases EIlE! 70% of which originated
from animals and mainly from wildlife (. Recent examples of virus spill-overs, such as the severe acute respiratory
syndrome (SARS) in China, the Middle East respiratory syndrome (MERS) in Saudi Arabia, the Ebola epidemic in West
Africa, and more recently the COVID-19 if a zoonotic origin is confirmed, have had severe public health and economic
consequences RUMNZ  Hence, the identification of potentially zoonotic viruses, and the understanding of their
transmission mechanisms, gained attention [311241[15][16]

Several groups of vertebrates, such as primates, birds, bats, and rodents, are major virus reservoirs 17, Rodentia is
composed of approximately 2277 species 18 occupying most of the ecosystems, from highly anthropized to pristine
natural habitats. This diversity, along with fast-paced lives, population dynamics, opportunism, and synanthropism make
them efficient amplifiers, spreaders, and transmitters of viruses 2229 playing key roles in viral emergence phenomena
Ré¥drdfE égnazonia is known for its high biodiversity of mammals, plants, invertebrates, and microbes 22, suggesting
high viral diversity and high number of potential zoonotic viruses (281271, Byt Amazonia also remains one of the least
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disturbed forest. By contrast, Flaviviridae and Astroviridae had a wider distribution across species—habitats, found in 12 of
12 and nine of 12 species—habitats. Alphavirus (Togaviridae) and Phlebovirus (Phenuiviridae), and the family
Rhabdoviridae, all recognized as potential vector-borne viruses, were detected only in P. cuvieri from disturbed forest.
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Figure 2. Heatmap of viral families’ numbers of contigs by species—habitat. Each cell representing a viral family in a
species-habitat contains log (1 + N), (where N is the number of contigs assigned to a viral family in a species—habitat).
The left row represents host-type (vertebrate, invertebrate, plants). Viral family names are marked with genome type, as
follows: ** = dsDNA, * = ssDNA, ++ = dsRNA, + = ssRNA (+), - = ssSRNA (-), °° = DNA-retrotranscribing, ° = RNA-
retrotranscribing. P.guy.PF: Proechimys guyannensis from pristine forest, P.guy.DF: Proechimys guyannensis from
disturbed forest, P.cuv.PF: Proechimys cuvieri from pristine forest, P.cuv.DF: Proechimys cuvieri from disturbed forest,
H.meg.PF: Hylaeamys megacephalus from pristine forest, H.meg.DF: Hylaeamys megacephalus from pristine forest,
Z.bre.SV: Zygodontomys brevicauda from savannah, Z.bre.DF: Zygodontomys brevicauda from disturbed forest,
Z.bre.PU: Zygodontomys brevicauda from peri-urban areas.

2.2.3. Viral Diversities

Viral richness ranged from 10 for Zygodontomys in peri-urban habitats and 21 for H. megacephalus in disturbed forests.
For P. guyannensis and P. cuvieri, the richness (a = 0) was higher in pristine forest than in disturbed forest. For Z.
brevicauda, the diversity was higher in savannahs, followed by disturbed forests, and was lowest in peri-urban habitats.
For H. megacephalus, the diversity was higher in disturbed forests for a < 0.25 but higher in pristine forests as soon as o
> 0.25, i.e. as soon as more weight is given to common species (Table 1).

2.3. Influences

2.3.1. Lessons for Undertanding Shaping of Viral Diversity

Over the past decade, virome studies exploring the roles of wild species as reservoirs of infectious diseases have become
more common thanks to the technological breakthrough of high-throughput sequencing. Considering that some species
are reservoirs of numerous viruses, including zoonotic ones, studies on viral diversity in rodents have recently increased
[471[481[49150151] - However, few studies explored the links among viral diversity, host ecology, and habitats [281521(53],

Here, we presented the viral diversity identified in three different organs of seven rodent species from French Guiana,
Northern Amazonia, according to their natural hosts and habitats. The viromes were quantitatively dominated by
vertebrate viral and to a lesser extent to viral sequences from invertebrates, plants, and amoeba. The different viral
families, whether originating from invertebrates, plants, or vertebrates, were not evenly distributed within the different
species and habitats. Viruses from Parvoviridae, Circoviridae, Astroviridae, and Anelloviridae from vertebrates were found
in most species and habitats and can be considered as generalists. These ubiquitous viruses were already reported in
wild rodents in United States B4, and Germany B4, On the other hand, Caulimoviridae (from plants), Iflaviridae (from
invertebrates), or Arteriviridae (from vertebrates) were rare and only present in some species and/or habitats. These



differences in the distribution of viral families can be put in perspective by hypothesizing a rare biosphere for microbial
diversity, with a portion of a few dominant microbial species and a second large, unexplored fraction with rare species 22,
Similarly, viromes in rodents could be dominated by a few dominant families, and a long distribution tail shaping a rare
virosphere.

Such differences in virus abundance could be explained by the ecology of the viruses (ability to infect host cells, to persist
and replicate) and by the ecology and behavior of rodent hosts in a given habitat. The role of vectors in viral transmission
and their diversity according to the environment can also impact viral diversity. For example, for P. cuvieri and H.
megacephalus, fourfold more viral families of invertebrate and vertebrate viruses have been detected in disturbed forest
compared with pristine forest. In these two opportunistic species, diet can be supplemented by invertebrates when fruits
and seeds are lacking 28], with subsequent impacts on their virome structures. On the other hand, a more specialized diet
may restrict the range of viral diversity. Viral diversity indices and the relative dominance levels of viral species were also
impacted by the level of disturbance and the type of habitat. The highest viral diversity index values were mainly observed
in pristine habitats, where the highest diversity of hosts occur.

The virome of P. guyannensis in pristine forest showed the highest diversities compared to disturbed forest. This trend
was nevertheless mitigated for P. cuvieri, although a higher diversity (a = 0.25) and number of rare viral entities were
observed in pristine forest.

In contrast, H. megacephalus presented a higher number of rare viruses in disturbed forests (high values of richness and
at a = 0). Z. brevicauda, the only species sampled in savannas, showed the highest viral diversities in this habitat, also
reflecting the richness of the savannah ecosystem 458l The lowest viral diversity in peri-urban areas may be related to
overall low biodiversity.

2.3.2. Lessons for Assessing Emergence Risks

The likelihood of disease emergence is commonly accepted to increase in disturbed habitats B2, The transmission of
viruses from forest species to humans may result from two mechanisms. First, anthropic activities can increase contact
between wildlife and humans when enter in slightly modified habitats and come into contact with a pristine viral cycle,
increasing the risk 231, Secondly, in more degraded forests, environmental changes may disrupt some ecological barriers
and impact the structure and dynamics of rodent and arthropod communities, species richness, and ecological networks
(691 This may favor generalist over specialist species and ultimately the dominance of more synanthropic ones. Feeding
networks between hosts and hematophagous vectors consequently change, influencing the transmission of viruses and
potentially increasing cross-species transmission events.

From a theoretical point of view, the dilution effect hypothesis explores how the decrease of biodiversity may increase the
amplification of zoonotic diseases. Briefly, the dilution effect proposes that a high diversity of putative hosts and vector
species dilutes the more efficient carriers and amplifiers of viruses in a community of less efficient species, consequently
reducing the circulation of the harmful ones and lowering the likelihood of infection (1. The dilution effect may affect
cycles involving a single animal host (i.e., reservoir) and those with two host compartments, i.e., reservoirs and vectors. In
the latter case, a decrease in vertebrate diversity may concentrate blood meals taken by arthropods on a lower number of
species, resulting in a higher viral circulation as soon as those resilient vertebrate species are also efficient carriers. The
dilution effect can be suggested to illustrate the links between the diversity of rodent hosts and the spread of some
zoonotic viruses. A higher probability of hepacivirus infection in P. semispinosus has been related to a loss of diversity in
hosts due to land-use change 84, hantavirus outbreaks in the Americas are related to environmental disturbances that
result in a decrease in specific richness of non-murine rodents and in the dominance of a few Muridae species known to
be more efficient reservoirs €384 |n French Guiana, all known human hantavirus cases occurred in agricultural and peri-
urban areas, where rodent diversity is much lower than in forest habitats (22, likely favoring hantavirus circulation in most
efficient reservoirs.

2.3.3. Concluding Remarks

Few studies on the viral diversity in rodents have been conducted, even though they comprise the first order of mammals
in terms of the number of species and are considered an important source of viral zoonotic pathogens. In French Guiana,
north of the Amazonian region, considered a hotspot of diversity for hosts and pathogens 2], the description of the virome
of seven rodent species allowed identifying a large number of new viruses, most of which correspond to vertebrate
viruses. These findings extend knowledge on the host range and evolution of these viruses. We showed that the diversity
of rodent viromes varies according to the types of habitat, with higher viral diversity in pristine forests compared with



disturbed forests for most rodent species. Environmental pressures on wild animal populations continue to grow, leading
to increasing risks of contact between human and rodent populations. This could favor the emergence or re-emergence of
viral diseases, including from viruses yet unknown or with undocumented roles on human health.



