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Upon pathogen attack, plants very quickly undergo rather complex physico-chemical changes, such as the

production of new chemicals or alterations in membrane and cell wall properties, to reduce disease damages. An

underestimated threat is represented by root parasitic nematodes. In Vitis vinifera L., the nematode Xiphinema

index is the unique vector of Grapevine fanleaf virus, responsible for fanleaf degeneration, one of the most

widespread and economically damaging diseases worldwide. The aim of this study was to investigate changes in

the emission of biogenic volatile organic compounds (BVOCs) in grapevines attacked by X. index. BVOCs play a

role in plant defensive mechanisms and are synthetized in response to biotic damages. In our study, the BVOC

profile was altered by the nematode feeding process. We found a decrease in β-ocimene and limonene

monoterpene emissions, as well as an increase in α-farnesene and α-bergamotene sesquiterpene emissions in

nematode-treated plants. Moreover, we evaluated the PR1 gene expression. The transcript level of PR1 gene was

higher in the nematode-wounded roots, while in the leaf tissues it showed a lower expression compared to control

grapevines.
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The European Union is the world’s main wine producer, with a share of about 60% . Given the economic

relevance of Vitis vinifera L., grapevine pests are of rising interest to agrochemical companies and plant

researchers. Among root parasites, nematodes can go undetected for years, especially in perennial crops, but

eventually, they strongly decrease crop productivity.

The phylum Nematoda is largely widespread around the world and occupies a huge range of ecological niches .

In soil, nematodes play an important role in the decomposition of organic matter and the recycling of nutrients,

determining the health of the soil itself. However, several taxa are harmful to many crops of economic importance

, such as grapevine.

Annual crop losses caused by plant-parasitic nematodes are estimated at 8.8–14.6% of total crop production and

80 billion USD worldwide . At least 2000 species of plant-parasitic nematodes are characterized by the

presence of a stylet used for root tissue penetration. Some species are endoparasitic, others ectoparasitic .

Worldwide, several grapevine-parasitic nematodes can be mentioned, but root-knot nematodes Meloidogyne spp.

and dagger nematode Xiphinema index are the most diffused. They are representative of the two root-feeding

models, endoparasitic and ectoparasitic, respectively. X. index is a soil-borne nematode that lives in proximity to

the rhizosphere   and feeds on cell content thanks to its strong stylet . X. index is per se a harmful pathogen for
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viticulture because it causes root necrosis and deformation which considerably reduce productivity . Besides, it

specifically transmits the Grapevine fanleaf virus (GFLV) , whose symptoms are belatedly visible at the leaf

level. Nevertheless, GFLV disease can lead to severe economic losses with a yield decrease up to 80%   due to

the reduction in fruit quality and the shortening of plant longevity .

Preventive application of nematicides, due to their limited efficacy in pest control and negative impact on the

environment, is no longer used routinely by farmers . For this reason, it is of fundamental importance to find a

way to detect nematode attacks early and prevent their damage.

Plants defend themselves from parasite attacks in different ways, in continuous coevolution with pathogens .

Their stationary status makes them vulnerable but plants limit damage using a variety of defense mechanisms ,

so disease is an exceptional condition rather than normality. Defense mechanisms can be both constitutive and

inducible, but while the first is pre-established and energetically irrelevant, the second requires a high amount of

energy and is stimulated by pathogen attacks. Inducible defenses act at the time of pathogen recognition and

rapidly limit possible damages. A typical feature of resistance is the induction of cell death at the site of attempted

attack such as the hypersensitive response (HR) , a mechanism which highly limits pathogen proliferation in the

host organism. Subsequently, a large set of defense-related genes are expressed as resistance develops . HR

settlement involves the induction of many defense mechanisms such as the strengthening of cell walls, salicylic

acid (SA) pathway, synthesis of phytoalexins organic molecules and HR-related molecules (H O ) which are

among the main molecules secreted and produced during the plant/pathogen interaction . Among proteins

involved in defense mechanisms, the so-called pathogenesis-related proteins (PRs) certainly have deep

importance in plant protection.

Besides accumulating locally in the infected tissues, PRs are also induced systemically, associated with the

development of systemic acquired resistance (SAR) against other infections . For example, in Arabidopsis

thaliana there are 17 evolutionarily conserved families of PRs   with 22 PR1-type genes , but only one of them

is activated by pathogens whereas other PR1-type genes are constitutively expressed .

Nematode attack can affect PR gene expression through the injection of substances produced in salivary glands,

which can inhibit host response. Root-knot nematodes secrete molecules called “effectors” to facilitate the invasion

of the host roots, avoid plant defense responses and reprogram root cells to form specialized feeding cells .

Various PRs have been identified as direct targets of nematode effectors, but nevertheless, their precise mode of

action remains largely unknown and only a few of their direct targets in plants have been identified .

Plants can either act directly on pathogen feeding and reproduction, for example through trichomes or thorns or

indirectly, through the emission of phytochemicals. In particular, the production of secondary metabolites is a

defense strategy to cope with several pests . Among secondary metabolites, plants produce root-specific volatile

organic compounds (VOCs) , which can influence the rhizosphere and plant-pathogen interaction .

[9]

[10][11][12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

2 2

[20]

[21]

[22] [23]

[24]

[25]

[25]

[26]

[27] [28][29][30][31]



Biogenic Volatile Organic Compounds | Encyclopedia.pub

https://encyclopedia.pub/entry/1332 3/6

There is growing evidence that both the quantity and type of volatiles produced by roots are dramatically altered by

the presence of different biotic and abiotic stresses . It was also reported that VOC changes in response to

pathogens or symbionts are species-specific . For example, it has been demonstrated that plants produce

chemical signals to ward off herbivorous insects by attracting their natural enemies . Biogenic VOCs (BVOCs)

are the major secondary metabolites in plants involved in communications between plants and the external

environment, in a mechanism known as “talking plants” .

The term BVOCs defines organic atmospheric gases different from carbon dioxide and monoxide . BVOCs

include a wide range of different compounds, among which isoprene and monoterpenes are the most prominent

. BVOC emission can be stimulated in response to insect feeding   and it is largely demonstrated that plants

vary the emission of organic compounds in different plant-parasite interactions . Moreover, BVOC

emission seems to be stimulated by the presence of elicitors present in parasite oral secretions .
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