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Cardiac autonomic neuropathy (CAN) is one of the earliest manifestations of type 2 diabetes (T2D). It constitutes

the major cause of silent cardiovascular events in patients without overt cardiac disease. The high prevalence of

CAN in patients newly diagnosed with T2D suggests that its pathophysiology is rooted in an earlier stage of

metabolic derangement, possibly being prediabetes.
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1. Introduction

Recent knowledge about the nature of disease progression has led researchers to study the status of CAN in

patients with recent-onset diabetes. Interestingly, comparisons between type 1 and type 2 diabetic individuals

further confirm the fact that CAN processes in T2D start earlier than the onset of overt metabolic impairment . To

this end, guidelines recommend CAN screening in T2D patients as early as their first diagnosis as opposed to 5

years after onset in T1D . Thus, it follows that dysglycemia is not the exclusive cause responsible for the initiation

of CAN and its progression in T2D. This is clearly reflected when comparing the risk factors of CAN in both

diseases. Above poor glycemic control in T1D, obesity and its associated dyslipidemia, hyperinsulinemia, and

hypertension (HTN) present additional risk factors for CAN in T2D . Hence, different factors in the etiology of the

disease are shown to contribute differentially to CAN manifestations. 

Two types of autonomic dysfunction can be associated with diabetes, either intrinsic or extrinsic . The first is

related to an insult caused directly to autonomic nerves, whereas the other can be secondary to cardiovascular

dysfunction, such as dilated cardiomyopathy and aortic stiffness. Studies concerned with investigating the major

contributors to cardiac autonomic dysfunction in T2D have indicated that it is primarily intrinsic in nature .

2. The Metabolic Syndrome: A Continuum of Low-Grade Pro-
Oxidative and Proinflammatory Processes 

Current understanding of the metabolic syndrome reveals the presence of an inflammatory component. Different

mechanisms in the course of progression to T2D trigger the initiation of inflammatory processes that are varied in

nature but are essentially linked . The so-called “metabolic inflammation” (also known as meta-inflammation)

distinguishes T2D from T1D. Interestingly, a population-based study comparing inflammatory profiles in
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normoglycemic, prediabetic, and T2D individuals offered a spectrum of differential change in inflammatory

biomarkers with disease progression . 

2.1. The Role of Altered Glucose Homeostasis in Meta-Inflammation

In the prediabetic stage, changes in glucose and insulin homeostasis have been shown to be linked to

inflammation pathogenesis even before the advent of hyperglycemia . An increase in insulin demand and

production secondary to insulin resistance is accompanied by elevated pancreatic endoplasmic reticulum stress

initiating pro-oxidative and proinflammatory processes . Additionally, hyperinsulinemia-induced lipid storage

was shown to promote adipose tissue-specific inflammation and a subsequent acute phase response . This

was shown to be mediated by adipose tissue expansion promoting hypoxia of poorly vascularized tissues, which

constitutes the driving force for the activation of nuclear factor-κB (NF-κB), a sensor of oxidative stress . On the

activation of NF-κB, adipose tissues secrete proinflammatory cytokines such as interleukin-6 (IL-6) and tumor

necrosis factor α (TNF-α), which promote liver synthesis of acute phase proteins such as C reactive protein (CRP)

and plasminogen activator inhibitor-1 (PAI-1) . Consequently, adipose tissue hypertrophy leads to apoptosis

attracting macrophages in crown-like structures . Immune cells release reactive oxygen species (ROS) in

response to cytokine upregulation . Moreover, overnutrition overwhelms inherent mitochondrial capacity for

scavenging excess ROS produced by metabolic processes promoting further upregulation of proinflammatory

processes through NF-κB pathways . On the onset of hyperglycemia, however, elevated mitochondrial aerobic

respiration and activity of the electron transport chain, as well as advanced glycated end products, aggravates

oxidative stress, which presents another activator of inflammatory cascades mediated by NF-κB, cAMP-regulated

element-binding protein, and activator protein 1 . Additionally, neurohormonal stimulation by the renin–

angiotensin–aldosterone system (RAAS) was shown to play a role in aggravating oxidative stress and inflammation

.

Interestingly, metabolic inflammatory processes are evident in the cardiovascular, neuronal, and neurovascular

systems, indicating their possible involvement in the etiology of cardiac autonomic dysfunction in the metabolic

syndrome . Hypoxia driven by vascular dysfunction activates immune cells of the central nervous system,

producing cytokines such as IL-1β, which in turn triggers effectors downstream of NF-κB further producing

cytokines such as IL-6. Additionally, the metabolic syndrome is a known disrupter of the integrity of the blood–brain

barrier (BBB) via altering the permeability of the choroid plexus . This was attributed to increased ROS

production leading to decreased expression of tight junction proteins. Hence, it promotes infiltration of

proinflammatory cytokines and immune cells from the bloodstream to the central nervous system, especially in the

context of systemic inflammation characteristic of T2D. The latter contributes to compromising BBB functions by

increasing the permeability of the basement membrane of the BBB, via matrix metalloproteases , allowing for

immune cell extravasation and upregulating leukocyte adhesion molecules, such as intracellular adhesion

molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), P-selectin, and E-selectin . In fact,

increased oxidative stress in the diabetic brain is related to decreased antioxidant defense enzymes and molecules

concomitant with an increase in the polyol pathway resulting in a decrease in NADPH recycling . It was also

shown that hyperinsulinemia can lead to increased neuronal oxidative stress through decreased mitochondrial
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PI3K/Akt signaling pathway [40]. Such changes were shown to be associated with autophagic disturbances in

different peripheral and central neurons . Alternatively, accumulation of ROS-generating mitochondria

resulting from autophagy suppression could activate, in addition to NF-κB, the NLRP3 inflammasome responsible

for proinflammatory cytokine maturation . Additionally, mitochondrial oxidative damage was shown to be

accompanied by a decrease in ATP levels resulting from suppressed mitochondrial energization potential. Hence,

the aforementioned changes could ultimately lead to neuroinflammation.

2.2. Contribution of Gut Microbiota to Meta-Inflammation

Alterations in the gut microbiome (GM) or dysbiosis has been recently linked to many morbidities, such as

metabolic and immune-related disorders . The GM community can affect the host health via two routes: the

bacterial components or pathogen-associated molecular patterns (PAMPs), including cell-wall constituents such as

lipopolysaccharides (LPS) , and the metabolites produced when digesting and processing food in the gut.

Hence, dysbiosis outcomes depend on the bacterial Phyla alterations in the gut . Moreover, GM plays a vital role

in regulating the permeability of intestinal mucosa . GM manipulates the host’s metabolism; hence, dysbiosis

was found to be linked to some compromised metabolic states and related diseases .

One of the major contributors to dysbiosis is dietary intake. A high-fat diet (HFD), implicated in the production of the

metabolic challenge leading to metabolic syndrome and T2D, promotes an increase in serum LPS. This was

proposed to occur due to increased permeability of the gut by the microbiota, which is linked to metabolic

endotoxemia. LPS acts through the Toll-like receptor 4 (TLR4) signaling pathway, where TLR4 is expressed on

macrophages and adipose tissue and is activated upon LPS recognition. The LPS/TLR4 complex has two main

signaling pathways: the MyD88-independent pathway that gives rise to Type 1 interferons (IFNs) and the MyD88-

dependent pathway that activates proinflammatory cytokines such as IL-1, IL-6 and TNF-α. Both pathways act via

NF-κB . Thus, upon activation, this complex stimulates white adipose tissue inflammation and

proinflammatory macrophage infiltration and is also linked to an increase in monocyte chemoattractant protein-1

(MCP-1) . 

3. Progression of CAN: From Metabolic Syndrome and
Prediabetes to T2D

3.1.  Determinants of CAN in Early-Onset and Advanced T2D

Comparisons with status and manifestations of CAN in T1D implicate different disease-specific characteristics in

the initiation and progression of CAN in T2D. Studies conducted by Ziegler et al. assessed the status of CAN in

patients with recent onset diabetes, i.e., less than or equal to 1 year after their first diagnosis . Their results

provide indication that the pathophysiologic trigger of CAN in recent-onset T2D is independent of hyperglycemia

but rather tied to metabolic characteristics related to obesity (body mass index (BMI) >30, central obesity, and

increased fat mass) and dyslipidemia, distinguishing this population from their control, and subsequently T1D,

counterparts . 
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Interestingly, different studies have brought into the picture another factor in the pathogenesis of CAN in early-

onset T2D; this is oxidative stress related to acute glycemic excursions, rather than chronic hyperglycemia. On

progress to T2D, changes in glucose tolerance and insulin sensitivity take the form of glycemic variability.

Importantly, glycemic variability was shown to have the power of predicting CAN in recent onset, where average

glucose level failed . Specifically, glycemic variability was higher in T2D patients with CAN, according to Ewing

battery tests, than in those without CAN. A role for systemic oxidative stress in the initiation of early

parasympathetic dysfunction was, thus, proposed. This particularly pertains to endothelial dysfunction  and

eventually baroreceptor impairment. In fact, increased ROS production in early metabolic insults was shown to be

related to decreased endothelial-dependent hyperpolarization secondary to reduced expression of potassium

inward rectifier channels . Such an increase is presumed to bring about elevated vascular tone through

impairing eNOS activity, ultimately diminishing NO-induced vasorelaxation . Moreover, a study assessing the

relationship between endothelial dysfunction and CAN revealed a positive association between NO and eNOS and

measures of cardiovagal control, presenting determinants of endothelial function as biomarkers for the

pathogenesis of parasympathetic neuropathy in T2D patients .

Interestingly, a study assessed the effect of glycemic variability on BRS in T2D patients and again revealed that its

elevation is independently correlated with decreased BRS . Above the detrimental effects of oxidative stress on

endothelial function and neuropathy, the study presumed that hyperinsulinemia caused by acute fluctuations in

blood glucose could be responsible for the observed blunted BRS . Additionally, results showed that BRS

decreased with diabetes duration, indicating worsening status with progression of disease components. However,

the study did not distinguish between the different arms of the baroreflex control and, thus, could not specify

whether sympathetic or parasympathetic deterioration was responsible for this drop in sensitivity. Indeed, a study

assessing the effect of glycemic control and disease duration on HRV in T2D patients revealed that worse glycemic

indices and longer duration were accompanied by lower parameters of both sympathetic and parasympathetic

determinants of HRV . The impact of glycemic control on CAN could be partially explained by a reduction in

antioxidant effectors and increase in prooxidative pathways, leading to neuronal ischemia and subsequent damage

. However, the contribution of hyperglycemia to inflammatory biomarkers in T2D cannot be overlooked . Thus,

it could be through an exaggerated inflammatory state that hyperglycemia worsens the status of CAN with disease

progression .

3.2. Effect of Glucose Homeostasis along the Continuum of Prediabetes to Early-
Onset T2D on CAN

In the same way, comparisons between prediabetic and type 2 diabetic manifestations of CAN allow us to draw

conclusions about the pathophysiology of CAN development over the natural course of the disease.

Hyperinsulinemia secondary to peripheral insulin resistance is the hallmark of the prediabetic stage . However,

the superimposition of hyperinsulinemia with sympathetic augmentation makes it unclear which causes the other. A

study of a fructose-induced glucose intolerance in mice revealed that sympathetic augmentation (elevated LF of BP

variability) and autonomic imbalance (increase in LF/HF) appear before hyperinsulinemia and other metabolic

derangements in the course of the metabolic syndrome . Major research has been channeled to the study of

early sympathetic augmentation, vagal withdrawal, and altered sympatho-vagal balance; however, little remains
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known about the origin and etiology of sympathetic dysfunction at a later stage of the disease. While chronic

hyperglycemia appears to be the eliciting factor, orthostatic hypotension was thought to be brought about by

damage of efferent vasomotor neurons in splanchnic blood vessels . Moreover, earlier studies reported on

cardiac sympathetic denervation . Little remains discovered, however, about the status of central control of

sympathetic activity or central sympathetic neuropathy.

3.3.  Influence of Obesity Indices and Dyslipidemia

When studying CAN in prediabetic and T2D patients, it is important to acknowledge the status of obesity in

assessed individuals. Indeed, studies investigating the relationship between obesity and CAN revealed that various

factors differentially contribute to the pathogenesis of CAN. In nondiabetic obese men, percentage body fat, waist

circumference, and visceral adipose tissue volume were associated with measures of reduced HRV, with

percentage body fat correlating with the greatest number of HRV parameters . In fact, obesity was shown to

predict development of systemic inflammation . Interestingly, hyperleptinemia was shown to mediate the

relationship between visceral fat accumulation and CAN in T2D patients . Additionally, dyslipidemia in the

presence of obesity aggravates the blunted baroreflex control in T2D and makes it more resistant to lipid-lowering

treatment otherwise effective in nonobese T2D patients . It is noteworthy that dyslipidemia could have

detrimental effects on CAN by exacerbating systemic inflammation .

4.  Association between Adipose, Vascular, Systemic, and
Neuroinflammation and CAN

As an earlier study implicated hyperinsulinemia rather than insulin resistance in the pathogenesis of CAN,

particularly impaired BRS , and hyperinsulinemia was shown to be the instigating cause of adipose inflammation

independent of obesity , it can be speculated that it is through adipose inflammation that hyperinsulinemia aects

cardiac autonomic control in the metabolic syndrome. Yet, autonomic, particularly sympathetic, function tends to

deteriorate as diabetes progresses. Indeed, a study by Lieb et al. (2012) revealed a particularly decreased total

spectral power (TSP), indicative of overall control of HRV in patients with established T2D, which was not

otherwise present in newly diagnosed diabetics, who showed isolated parasympathetic blunting . In fact, the

strongest positive correlation was found to be present between total adiponectin-to-leptin ratio and TSP, indicating

a contribution for these counteractive adipokines in dictating sympathetic tone. Additionally, increased PAI-1 was

shown to be essentially increased in patients with established T2D compared to those with newly diagnosed

diabetes (within 6 months of diagnosis). As such, one can conclude that, while prolonged exposure to

hyperglycemia might underlie the observed CAN deterioration in T2D, this seems to occur through exacerbation of

adipose tissue inflammation occurring in earlier stages of the disease. Later, Herder et al. (2017) retested the

association between inflammation and CAN, especially in patients with new-onset T2D . In this study, they found

that the association between IL-6 and cardiac autonomic reflex tests was rather explained by confounding factors.

This is in line with the results of a longitudinal study indicating that the association between baseline IL-6 levels and

follow-up HRV measures was dependent on BMI , again potentially implicating adipose tissue expansion and

inflammation. However, independent inverse associations were found between soluble adhesion molecules such
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as soluble ICAM and E-selectin and sympathetic and parasympathetic function, respectively, indicating a role for

vascular inflammation in CAN . Significantly, our previous studies examined the evolution of inflammatory

changes in association with worsening of CAN as the metabolic insult progressed. We show that early prediabetic

parasympathetic dysfunction is associated with perivascular adipose tissue inflammation . After the development

of hyperglycemia, localized adipose tissue inflammation degenerated into systemic inflammation as evident by

increased serum IL-1  and signs of disseminated cardiovascular damage that were associated with increased

neuronal oxidative stress, inflammation, and suppressed autophagy in the brainstem with concomitant deterioration

of CAN, including both sympathetic and parasympathetic functions . 
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