Vitamin D and Non-Melanoma Skin Cancer

Subjects: Dermatology Contributor: Saverio Caini

Non-melanoma skin cancers (NMSC) are the most common type of skin malignancies among humans (particularly fairskinned populations of European descent) and its incidence rates have been on the rise globally for decades [1]. The best defined role of vitamin D in humans is in supporting the normal development and maintenance of bone tissues and in regulating calcium metabolism [7,8]. Furthermore, there is growing evidence that vitamin D plays a role in many fundamental biological processes (e.g., cell proliferation, angiogenesis, and modulation of the immune system) [9] implicated in carcinogenesis.

Keywords: vitamin D ; dietary intake ; blood concentration ; gene polymorphism ; vitamin D receptor ; vitamin D binding protein ; non-melanoma skin cancer ; basal cell cancer ; squamous cell cancer ; risk

1. Introduction

Non-melanoma skin cancers (NMSC) are the most common type of skin malignancies among humans (particularly fairskinned populations of European descent) and its incidence rates have been on the rise globally for decades ^[1]. The near totality of NMSC is represented by keratinocyte skin cancers (KSC), e.g., basal cell cancer (BCC) and squamous cell cancer (SCC), while other non-melanoma skin cancer types not originating from keratinocytes (e.g., Merkel cell carcinoma) are rare. The economic costs required by the management of NMSC patients are substantial because of very high NMSC incidence rates ^[2]. The most important environmental risk factor for NMSC is exposure of the skin to ultraviolet radiation (UV) ^[3]. Other established and suspected risk factors include older age, male sex, light-coloured skin, eyes and hair, use of photosensitizing medications, and having had a previous NMSC diagnosis ^{[4][5]}. Given the high NMSC disease burden, research has largely focused on identifying other preventable risk factors, and several publications have examined the role of vitamin D in the aetiology of NMSC.

Vitamin D is produced in human skin and is also found naturally in some foods ^[6]. In addition, vitamin D-fortified foods are available on the market, and vitamin D can be obtained by taking supplements. In the body, vitamin D is hydroxylated first in the liver to form 25-hydroxivitamin D [25(OH)D], which is the major circulating form of vitamin D, and then in the kidney to form the physiologically active 1,25-dihydroxyvitamin D. Most vitamin D in the blood is bound to the vitamin D binding protein (VDBP). To exert its action, calcitriol binds to the vitamin D receptor (VDR): several polymorphisms of the VDR gene lead to an altered functionality of the VDR protein, and have been investigated in association with the occurrence of several diseases.

The best defined role of vitamin D in humans is in supporting the normal development and maintenance of bone tissues and in regulating calcium metabolism ^[Z]. Furthermore, there is growing evidence that vitamin D plays a role in many fundamental biological processes (e.g., cell proliferation, angiogenesis, and modulation of the immune system) ^[9] implicated in carcinogenesis.

2. Vitamin D and Non-Melanoma Skin Cancer

2.1. Vitamin D Blood Concentration and NMSC Risk

Ten studies reported a RR estimate comparing NMSC risk among those in the highest vs. lowest category of serum/plasma 25(OH)D concentration (**Table 1**) ^{[10][11][12][13][14][15][16][17][18][19]}. Of these, five were conducted in the USA, two in Denmark, and one each in Australia, Brazil, and Poland. In terms of study design, three were case-control studies ^{[13][17][19]}, two were nested case-control studies ^{[10][11]}, and five were cohort studies ^{[12][14][15][16][18]}. The ten studies encompassed a total of 3899 NMSC cases, of which 1569 (40.2%) were contributed by Winsløw et al. ^[18]. Vitamin D concentration was measured in serum in all studies except in Liang et al. ^[14]. The studies differed greatly both in the

References were used to calculate the RR for the highest vs. lowest vitamin D concentration comparison, and in the

degree of statistical adjustment. In particular, for three studies an unadjusted OR was calculated using data provided in 1. Apalla, A

Zahle dig Maia, characteristics. of the studies are writing on the association of 25 (OH)D (comparison reinformation reinformation of 25 (OH)D (comparison reinformation of 25 (OH)D (comparison reinformation reinfor

3. 5 Au Yea	Savoye Wasko 2018, 2	, I.; Olse €ouMryPa 8, 27–3	en, C.M at tern s (Design 3.	.; White skin ofcalltrav Type	man, D. iðlet Ra Cases	.C.; Bi N Ciatio Size	jon, A.; BGEKAP	Wald, L stiffe and Males	; Darto d	bis, L.; Cla Caaaceof Ri Diagnosis	avel-Chap s <u>k</u> շրշկթ _e E	oelon, F.; B 305540557	outron- p <mark>St</mark> udy	Ruault, /. 95 %Epi ci	M.C.; id eimitit g Variables
4. E	Belbasi	s, L.; St	efanaki.	I.; Stra	tigos, A	.J.; Ev	angelo	u, E. No	on-gene	tic risk fa	ctors for a	cutaneous	melano	ma and	j age, sex,
A9 20 5. (keratino ^{10 120} Sandini	ocyte sk usa i, S.; Pa	in cance NCC Ili, D.; S	ers: An ı всс padola,	umbrella 220 G.; Ber	a revie 21 ndinell	ew of m 20 li, B.; C	eta-ana 51.8% ocorocc	Jyses, J range hbg,7a⊊.;	. Dermato 1968– 1989 Stangano	ol. <u>Sci.</u> 20 serum 25(он)D elli, I.; Mil	5th vs. 1st)16 g⊗04tile33 (>29.8 vs. igi, Ľ ^{1,4} Mas	0–339. 2.09 ala, G.;	0.95– 4.58 ; Caini,	season of sampling, phenotype, S. Altti- exposure.
ł	nyperte	nsive di	rugs and	d skin ca	ancer ris	sk: A r	eview o	of the lite	erature a	and meta	-analysis	. Crit. Rev.	Oncol.	Hemat	ol. 200408,
Sk	<mark>efsey</mark> , 1–	9.										>20 vo <20		0.004	
20 6. [10 ^[19] 90ming	usa juez, L.	cc J.; Farru	к <mark>sc</mark> ıggia, M	50 .; Veron	1 Iese, N	.4 N.; Bark	ns Dagallo,	M. Vitar	ns min D So	25(OH)D urces, Me	etabolism,	0.16 and De	fictency	none ^(c) /:
1	Availab	le Comp	oounds	and Gui	delines	for Its	Treatn	nent. Me	etabolite	es 2021, 2	11, 255.	5th vs. 1st			age,
т 7?Ф	ang, 39KH2, D	D.D. Vita	min D a	NMSC Ind bone	e. Curr.	Oste ^{9;}	poros.	Rep. 20	mean 1 2 3. 6 0,	2000- 152007159	serum 25(OH)D	quintile (≥29.9 vs. <16 ng/mL)	0.54	0.31- 0.96	season of sampling, other
8. ł	<hamm< td=""><td>nissa, R.</td><td>A.G.; F</td><td>ourie, J.</td><td>; Motsw</td><td>/aledi,</td><td>M.H.; I</td><td>Ballyran</td><td>n, R.; Le</td><td>emmer, J.</td><td>; Feller, L</td><td>. The Biolo</td><td>gical A</td><td>ctivities</td><td>of</td></hamm<>	nissa, R.	A.G.; F	ourie, J.	; Motsw	/aledi,	M.H.; I	Ballyran	n, R.; Le	emmer, J.	; Feller, L	. The Biolo	gical A	ctivities	of
20	System	D igi nd I s, Skin	lt s Re ce Biology,	and Or	Relation al Healt	n to G <u>ø</u> h. Bio	∳çium a med. R	an d B on tes. Int.	е Но те 2018, 2	eo sta sis, 2009 018, 927	Са тее т, I 25(он) 6380.	mm¶u¶Ateilan (≥31 vs. <19 ng/mL)	d C <u>r</u> ardi	ov lals cu 2.3	laf _{age, sex}
9. Le 20	Foner, (siak, AsSOC.	C.D.; Da 2010, 1	ivis, C.E 10, ^C 149	D.; Milne 2–1500.	er, J.A. T ¹⁴²	he vit 14	amin D 42	and ca 50.0%	NCEA 56, range 45–78	nundrum: 2007– 2008	: Aiming a serum 25(ОН)D	at a moving >30 vs. <20 ng/ml	target. 0.18	J. Am. 0.08– 0.37	Diet. none ^(c)
10. /	Asgari,	M.M.; T	ang, J.;	Warton	, M.E.; (Chren	, M.M.;	Queser	nberry, C	C.P., Jr.; E	Bikle, D.;	Horst, R.L.	; Orenti	reich, N	l.; age.
\	/ogelm	an, J.H.	; Friedn	nanacG.[D. A sso	ciation	of pre	diagnos	tic serui	m vitamir	D levels	with the de	ev <u>el</u> øpn	n e r ¶2 of 2.80	basao coll sampling,
<u>ال</u> 20	angCino 12 ^[14]	USA USA	OVEST. D	ermato	. 2010,	130, 1	1438–1 41	443. 0.0%	ns	1976- 2008	plasma 25(OH)D	4th vs. 1st quartile			UV exposure.
11.	г Гang, J	.Y.; Pari	mi, N.; \	Nų_A.; ا	Bo <u>ş</u> carc	lin, W.	J.; Shil	kany, J.M	И.; Chre	en, M.M.;	Cumming	gs, S.R.; E	ostejņ,	E1H0,-JI	.phBaatone,
[D.C.; O	steopor	otic Fra	ctures ir	n Men (I	MrOS)) Study	Group.	Inverse	associat	ion betwe	een serum	25(OH)	vitamii	n Dolawels
á	and nor	n-melan	oma ski	in cance	er in elde	erly m	en. Ca	ncer Ca	uses Co	ontrol 201	.0, 21, 38	7–391. ≥75 vs. <75		1.10-	age, sex,
12. ^{va}	≞ide. M	I.J.: Joh	nson. D	всс .А.: Jac	300 obsen. (G.R.:.	Kraient	50.0% a. R.J.:	Rao. D.	S.1994677. H	H.WaƙiuahOh	nmol/L Inson, C.C.	1.51 Vitami	n D and	UV d exposure.
Բ 2Գ	iðis, ^s Iðr if nel	Aŭstralia anoma	skin car	ncer in a	health	maint	enance	e organiz 56.0%	zation Co 63	ohort. Arc	25(ОН)D ch. Derma	at@1/52/0.1~1/5 nmol/L	147,13 0.67	7 0 44138 1.03	phenotype, phototype, other
13. I	_esiak,	A.; Norv	val, M.;	Wodz-N	laskiewi	icz, K.	; Pawli	czak, R.	; Rogov	vski-Tylm	an, M.; S	ysa-Jedrze	ejowska	ı, A.; So	objanek,
sk 20	MabyWlo 14 ^[]6] 14the ∨	darkiew ^{Denmark} 'DR and	/icz, A.; cohort MTHFI	Narbutt NMSC R genes	, J. An e ³⁹⁸ 5. Exp. E	enhano 12, Derma	ced risk 204 tol. 201	c of basa 48.1% 1, 20, 8	al cell ca ns 800–804	arg igg ma I. ²⁰¹¹	is азурсі 25(он)d	aten withtp quartile	articula 1.43	1.93 1.93	age, sex, 10101015165 sampling, other
14.1	_iang, C	G.; Nan,	H.; Qu	reshi, A.	A.; Han	, J. Pr	e-diagi	nostic pl	asma 2	5-hydrox	yvitamin I	D levels an	d risk o	f non-m	nelanoma
208	ares,° ¶ki∰Cai ^(b)	n ee rziin v	vommen.	Pkos C	DNE 201	L2, 7,2	9 85211	. 56.1%	67, range	2016– 2017	serum 25(OH)D	≥30 vs. <20 ng/ml	50.00	11.11- 100.0	none ^(c)
15. \	/an dei	r Pols, J	.C.; Rus	ssell, A.;	; Bauer,	U.; N	eale, R	.E.; Kim	lin, M.G	.; Green,	A.C. Vita	amin D stat	us and	skin ca	ncer risk
wi 2q	ndeper 13¹⁷⁸¹ –64	ndent of Denmark 1.	time ou cohort	Itdoors: NMSC	11-year 1569	r prosp 35,	Dective 298	study in 43.0%	ns an Aus	stralian co 2012	отриніту 25(ОН)D	. J_Invest nmol/L	Dermat 3.76	to <u>l 2</u> 01 5.48	3 age, sex, season of sampling, other
16. 9	Skaabv	. T.: Hus	semoen	. . .: T	huesen	B.H ·	Pisina	er. C.: .1	ørgense	en. T.: Ro	swall. N	Larsen, S	C.: Lin	nebera	Α.
F	Prospe	ctive po	pulation	-based	study of	f the a	ssocial	tion betv	veen se	erum 25-h	vdroxvvit	amin-D lev	els and	I the inc	, cidence of
	specific	types c	of cance	r. Cance	er. Epide	emiol.	Bioma	rkers. P	rev. 201	4, 23, 12	20–1229				

 Soares, A.M.; Szejnfeld, V.L.; Enokihara, M.Y.; Michalany, N.; Castro, C.H. High serum 25-hydroxyvitamin D concentration in patients with a recent diagnosis of non-melanoma skin cancer: A case-control study. Eur. J. Dermatol. 2018, 28, 649–653.

- 18. Winsløw, U.C.; Nordestgaard, B.G.; Afzal, S. High plasma 25-hydroxyvitamin D and high risk of nonmelanoma skin cancer: A Mendelian randomization study of 97 849 individuals. Br. J. Dermatol. 2018, 178, 1388–1395.
- 19. Skelsey, M.; Janicic, N.; Mendu, R.; Moshell, A.; Colombo, M.; Soldin, S. Hypovitaminosis D and non-melanoma skin cancer. Conference: Annual Meeting of the Society for Investigative Dermatology. Atlanta, Georgia, 5–8 May 2010. J.

cancer. Conference: Annual Meeting of the Society for Investigative Dermatology. Atlanta, Georgia, 5–8 May 2010. J. CC: case-control. NCC: nested case-control. BCC: basal cell cancer. SCC: squamous cell cancer. KSC: keratinocyte skin Invest. Dermatol. 2010, 130, 355. cancer. NMSC: non-melanoma skin cancer. ^(a) Conference abstract. ^(b) RR were inverted (compared to what reported in 20. Davies, T.W.: Treasure, F.P.: Welch, A.A.: Day, N.E. Diet and basal cell skin cancer: Results from the EPIC Norfolk the text) so that the category of patients with lowest 25(OH)d concentration is the category of reference. ^(c) Unadjusted cohort, Br. J. Dermatol. 2002, 146, 1017–1022. OR calculated using data provided in the contingency table.

21. Asgari, M.M.; Chren, M.M.; Warton, E.M.; Friedman, G.D.; White, E. Supplement use and risk of cutaneous squamous cell carcinoma. J. Am. Acad. Dermatol. 2011, 65, 1145–1151.

22.2 aVitaminFD, Dietaria intake/andoSupplementation and the risk of nonmelanoma and melanoma skin cancer: Post hoc

Fivensitydies deported mentionet international wetware miteration between miterational terms. The provide the provided terms of terms of the provided terms of the provided terms of terms of

2415 Secretaria and realized in the population-based case-control study by Asgan et al., which included 2415 Secretaria and realized and the controls of the controls of a secondary analysis of a randomized clinical trial Ancc) Clin Nutr 2020 n the professional secondary analysis of a randomized clinical trial Ancc) Clin Nutr 2020 n the 112 1532–1539. How within D intake (food + supplements) [22]. Finally, in two RCT, both conducted in the USA, NMSC

25s/Bwass,c5n/pa@drajin.BrgAstudyl,partikaisantts/bein/gagiye/i;vitamiini.D.Aupptierfreh.Es;ahublehgasv.ivathe/p&cebhalgeeupAbut no

sigMfizaffeassociation. Association 12312 with an end Recentor and International Vieto the Rinko following according to the recent of the rece

of Stablysde Style (Restreted Stable & Bernational studies) and type of exposure (vitamin D from food, supplements, or

2009 Han, J.; Colditz, G.A.; Hunter, D.J. Polymorphisms in the MTHFR and VDR genes and skin cancer risk. Carcinogenesis 2007, 28, 390–397.

Table 2. Main characteristics of the studies reporting on the association between vitamin D intake (from foods, 27. Köstner, K.: Denzer, N.; Koreng, M.; Reichrath, S.; Gräber, S.; Klein, R.; Tilgen, W.; Vogt, T.; Reichrath, J. Association supplements, or both) and the lisk of non-melanoma skin cancer.

of genetic variants of the vitamin D receptor (VDR) with cutaneous squamous cell carcinomas (SCC) and basal cell carcinomas (BCC): A pilot study in a German population. Anticancer. Res. 2012, 32, 327–333.

Author, Study Study Register N P. Study Study Register N P. Study Study Register N Study Study Study Register N Study Study Register N Study Study Study Register N Study Study Register N Study Study

29.0 Filefordi, S.C. de Vries, E. Byen Meyers, J.B.; Fang, Y.; Stricker, B.B.; Weiner, Fast itaning Debinding the notype, 2002 [20] food by 2.08 microg/d 1.35 protein polymorphisms are not associated with development food by 2.08 microg/d 1.35 198 (multiple) basal cell carcinomas. Exp. Dermatol. 2012(0, 19, 1103–1105.

age, sex, 30. 2011 mig, Xu,swiu, Wc4Metassanalysists of randomized controlled frais or average the past 10 definition of the past 10 definition of the past 10 other o

mear

31. Equiphanem, H.; Canudas, S.; Hernandez-Alonso, P.; Becerra-Tomás, N.; Balilovin, Salas-Salvadó, J.; Macias-^{2011/221} ^{2013/221} ^{2013/221} ^{2014/221} ²⁰¹⁵ ^{2014/221} ²⁰¹⁵

32. Sun, K.; Zuo, M.; Zhang,^BQ:; Wahay, K.; Huang, D.; Zhang, H. Anti-Tumor Effect for Vitamin D Combined with Callebrance in the state of the st

33. Gnagnarella, P.; Raimondi, S.; Aristarco, V.; Johansson, H.; Bellerba, F.; Corso, F.; De Angelis, S.P.; Belloni, P.; Catheli, S.; Gandini, S. Ethnicity as modifier of risk for Vitamin D receptors polymorphisms: Comprehensive meta⁰dhalysis of all 1000 lu/day 1000 l

0 79

1.27

other

2.3. VDR and VDBP Genes Polymorphisms and NMSC Risk

Retrieved from https://encyclopedia.pub/entry/history/show/36435 Five papers reported on the association between any of five polymorphisms of the VDR gene (Apa1, Bsm1, Cdx2, Fok1, and Taq1) and NMSC risk [13][25][26][27][28]. The studies were conducted in the USA (n = 2) and Europe (n = 3) (**Table 3**). Meta-analysis was conducted for three polymorphisms: Apa1, Bsm1, and Taq1: no association with NMSC risk emerged for any of these three polymorphisms, either in the Hom vs. WT or in the Het vs. WT models (**Figure 1**, **Figure 2** and **Figure 3**). The heterogeneity was below 50% for all models. The relationship between Cdx2 and Fok1 polymorphism and NMSC risk was examined in the paper by Han et al. [26]: no significant association emerged in any of the models that were Participants in the intervention arm received 500 mg of elemental Ca twice daily in addition to vitamin D. ⁽¹⁾ Results fitted. Instead, the Fok1 TT (Hom) genotype was reported to significantly increase BCC risk (OR = 10.14, p-value < 0.001) were also available for vitamin D from foods only, and stratified for the two sub-cohorts (Nurses' Health Study and Health professionals Follow-up Study).

Table 4. Main characteristics of the studies reporting on the association between polymorphisms of the vitamin D receptor (*VDR*) gene and the risk of non-melanoma skin cancer.

Author Voor	Country	Study Design	Skin Cancer Type	N Cases	N	VDR Polymorphisms					
Aution, real					Controls	Apa1	Fok1	Bsm1	Cdx2	Taq1	
Hap 2007 [20]	USA	NCC	BCC	295	853		x	x	х		
nan, 2007 <u>[30</u>]			SCC	281	- 655		x	x	x		
Lesiak, 2011 [<u>13</u>]	Poland	hCC	BCC	142	142	x	х	x		х	
Köstnor 2012 [21]	Germany	hCC	BCC	87	50	x				x	
KUSIIIEI, 2012 [31]			SCC	100		x				x	

Author Vear	Country	Study Design	Skin Cancer Type	N Cases	N Controls	VDR Polymorphisms					
Aution, Tear	Country					Apa1	Fok1	Bsm1	Cdx2	Taq1	
Burns, 2017 [<u>29]</u>	USA	hCC	KSC	97	100	х		x		x	
Morgado-Águila,	Spain	hee	BCC	61	72	x		x			
2020 <u>[32]</u>		nee	SCC	20	75	x		x			

BCC: basal cell cancer. SCC: squamous cell cancer. KSC: keratinocyte skin cancer. NMSC: non-melanoma skin cancer. NCC: nested case-control study. hCC: hospital-based case-control study.

Figure 1. Forest plot for the association between the Apa1 polymorphism of the vitamin D receptor (VDR) gene and the risk of non-melanoma skin cancer. BCC: basal cell cancer. SCC: squamous cell cancer. RR: relative risk. Hom: homozygous. Het: heterozygous. WT: wild-type.

Figure 2. Forest plot for the association between the Bsm1 polymorphism of the vitamin D receptor (VDR) gene and the risk of non-melanoma skin cancer. BCC: basal cell cancer. SCC: squamous cell cancer. RR: relative risk. Hom: homozygous. Het: heterozygous. WT: wild-type.

Figure 3. Forest plot for the association between the Taq1 polymorphism of the vitamin D receptor (VDR) gene and the risk of non-melanoma skin cancer. BCC: basal cell cancer. SCC: squamous cell cancer. RR: relative risk. Hom: homozygous. Het: heterozygous. WT: wild-type.

A single study that considered polymorphisms in the VDBP gene and NMSC risk ^[29]. The study relied on 7983 participants, of which 235 developed BCC during follow-up. BCC was not associated with the two polymorphisms of the VDBP gene (rs7041 and rs4588) that were investigated, despite some limited evidence of an age-specific effect.

There was some evidence that individuals with higher measured plasma or serum 25(OH)D concentration were at increased NMSC risk. However, studies were greatly heterogeneous, which suggests caution in drawing conclusions, particularly regarding the magnitude of the possible association. Vitamin D intake was associated with a mild increase in BCC risk in the large observational study by Park et al.; however, this finding was not confirmed in another four studies, two of which had a RCT design. Finally, NMSC risk was not associated with any single polymorphism of the VDR or VDBP genes.

The association between serum/plasma 25(OH)D concentration and NMSC risk is most likely due to UV radiation exposure being causally linked to both vitamin D concentration in the blood and NMSC risk. The mild, yet significantly increased BCC risk observed among individuals with higher vitamin D intake in the large study by Park et al. is difficult to explain, particularly in light of the growing evidence in favour of a protective effect played by vitamin D supplementation against cancer at several body sites ^{[30][31][32]}. However, the finding by Park et al. was mild, limited to BCC, and not confirmed in any other study, including two vitamin D supplementation RCTs which, because of their experimental design, are expected to be less susceptible to biases (e.g., confounding and misclassification) affecting observational studies. By and large, a strong association between vitamin D intake or supplementation and NMSC risk seems unlikely, and vitamin D supplementation should continue to be considered as an effective and reasonably safe method of achieving the recommended amount of vitamin D.

Individuals carrying polymorphisms at the VDR or VDBP genes do not seem to suffer from an increased NMSC risk, with the possible exception of the VDR TaqI gene polymorphism. However, the number of studies eligible for inclusion in each gene polymorphism-specific meta-analysis model was limited, which prevents drawing firm conclusions. The studied polymorphisms of the VDR gene are known to impair the functionality of the receptor and eventually disrupt several vitamin D-linked biological pathways ^[8]. Considering that VDR polymorphisms may affect the risk of cancer at multiple body sites ^[33] and that an effect on NMSC risk cannot be ruled out a priori, we recommend that more studies are conducted in this research area.

3. Conclusions

The link between vitamin D metabolism per se and NMSC risk is unlikely to exist, although some findings (in particular, the positive association between vitamin D intake from diet and supplements and BCC risk reported in a large observational study) are worthy of further investigation, for instance within existing large-scale RCTs including vitamin D supplementation as an experimental arm. The cornerstone of NMSC prevention must remain limiting exposure of the skin to UV light, and vitamin D supplementation may be recommended as the preferred method to secure the multiple health benefits of adequate vitamin D concentration (which extends far beyond the possible effects on the skin) while avoiding the health risks associated with an excessive exposure of the skin to the UV radiation.