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Ceramics and polymers are two main candidate materials for membranes, where the majority has been made of
polymeric materials, due to the low cost, easy processing, and tunability in pore configurations. In contrast, ceramic
membranes have much better performance, extra-long service life, mechanical robustness, and high thermal and
chemical stabilities, and they have also been applied in gas, petrochemical, food-beverage, and pharmaceutical

industries, where most of polymeric membranes cannot perform properly.

composite membrane polymeric membrane ceramic membrane nanocomposite

| 1. Introduction

Ceramics and polymers are the two main materials for various membranes. In particular, ceramic membranes have
gained more attention recently, due to their superior performance, hydrophilicity, mechanical robustness, and high
thermal and chemical stabilities, which allow at least double lifespan compared with the polymer membranes 1112],
The common ceramic materials used in membrane applications are Al,O3, TiO,, ZrO,, SiO, B4 and those
containing a combination of them such as Al,03-ZrO, B! and TiO,-SiO, €, and various metal nanoparticles
embedded in ceramics such as Ag-TiO, 4. However, the relatively high production cost of the ceramic membranes
is a restricting parameter in widening of their applications. Indeed, polymeric materials are still more widely used,
although there is a steadily decrease in the overall market share. Polymer membranes have the merits of being low
cost, tunable in porous structure, and ease in scale-up. Therefore, the polymer membranes have been dominantly
employed for water, wastewater treatment, and desalination . Among them, Poly-ethersulfone (PES) &, Poly-
sulfone (PSf) 29, poly-vinylidene fluoride (PVDF) 122 poly-vinylpyrrolidone (PVP) 28l poly-acrylonitrile (PAN) [24]
(251 poly-vinyl alcohol (PVA) 87 and poly-vinyl acetate (PVAc) L8 are widely used as the polymeric membranes
(Table 1). In addition to the poor life span, most of these polymeric membranes are inherently hydrophobic to
certain extent, leading to low water flux, high fouling tendency, which often causes even shorter lifetime and higher

operating cost.

Table 1. Structures of common polymer membranes.
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| 2. Ceramic-Polymer Composite Membrane

Ceramic-polymer composite membranes can be divided into three groups. Nanocomposite membranes are
composed of a polymeric membrane in which inorganic NPs are dispersed. This type of membranes has been
most widely researched. The preparation for the nanocomposite membrane is mostly-based those well developed
for polymer membranes, such as the phase inversion or casting of a polymer solution containing ceramic NPs.
Either flat sheet or hollow fiber configurations can be obtained. The nanocomposite membrane has been used for
both MF and UF processes. In the TFN membranes, a thin nanocomposite membrane is supported on a polymeric
support, where ceramic NPs are located on the surface of the membrane and provide minimal influence on the
intrinsic properties of polymeric substrate such as the pore structure. The surface properties of the resultant
membrane are basically governed by ceramic NPs. The ceramic-supported polymer membranes consist of a thin
polymer layer on a porous ceramic support. In contrast to the other two types of membranes, relatively dense and
bulk ceramics, not ceramic NPs, are used in this type of membranes. The high chemical and thermal stability of
ceramic supports restrict swelling of the thin polymer layer and improve flux and provide long membrane life. Highly

tunable pore distribution and pore size of the polymeric surface layer influence the rejection properties of
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composite membranes. Coating on a polymer solution or in situ polymerization on a ceramic support has been
employed to prepare the ceramic-support membranes. In all three types of membranes, not only the intrinsic
properties of ceramic and polymeric components but also the interface properties between them influence the

membrane performance significantly.

2.1. Ceramics in Polymer (Nanocomposite) Membranes

This type of membranes is composed of polymeric membranes in which ceramic NPs are dispersed in.
Incorporation of the ceramic NPs into polymers could influence not only the hydrophilicity, pore size and
distribution, surface roughness, but also can add new properties such as photocatalytic properties, antibacterial
properties, etc. (12, The fabrication of these membranes is mainly performed by casting and phase inversion (PI)

using a polymer solution containing ceramic NPs 29,

Metal oxides such as SiO,, Al,O3, TiO,, Fez0, have been exclusively used as ceramic fillers for the
nanocomposite membranes, where TiO, is one of the most widely used ceramics in this type of membranes.
Additionally, natural minerals such as kaolin [, cloisite 22 and montmorillonite (23! are studied to reduce material
cost for inorganic components. The main advantages of TiO, incorporation include the enhancement in
hydrophilicity as well as antibacterial behavior by photocatalytic properties of TiO, 24, By the addition of TiO,, a
decrease in contact angle and improvement of water flux have been reported by several groups. Additionally, UV-
radiation enhances fouling resistance and antibacterial capability of TiO,-nanocomposite membranes due to the
superhydrophilicity and photocatalysis of TiO, under UV irradiation 2328 The UV irradiation also promote flux

recovery of the TiO,-nanocomposite membrane 2,

The enhancement in hydrophilicity by the addition of ceramic NPs has also been observed in other transition metal
oxides, such as SiO, [28[29][B0B1]82[33] ' A, 0, [B4SSIS6IST] Fe,0, [B8I8940141I142] and ZrO, 431, The influence of
these ceramic fillers on the properties of polymeric membranes is dependent on the type and amount of fillers
being added. For example, the addition of mesoporous silica into PES UF membrane does not affect the pore size
significantly, but increases the level of porosity, resulting in an improved water flux 22, Contrarily, the addition of
Fe;0O, into PES membrane largely influences both pore size and the level of porosity 41, The level of porosity

increased by the Fe30, addition, while the pore size drastically decreased.

2.2. Thin Film Nanocomposite (TFN) Membranes

This type of membranes is composed of a thin hanocomposite membrane supported on polymer substrates. The
concept of TFN membrane was first suggested in the 1970s, and it has been widely studied for desalination of
seawater/brackish water, removal of heavy metals, organic micropollutants and pharmaceutically active
compounds 29, PSf has widely been used as a supporting layer while PA (polyamide) has been widely employed
in the thin top layer. As inorganic compounds, (a) metal oxide NPs, (b) metal NPs and (c) carbon materials such as
CNT and GO have been studie.
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As in the nanocomposite membranes, TiO, nanoparticles are among the most used in the thin top layer, and the
water flux and antifouling properties are improved 4443148471 An optimum TiO, loading in this type of membrane
is reported as 0.05~0.1 wt.%. This is much lower than that in TiO,-nanocomposite membranes, which is around 1
wt.%. In the TFN configuration, TiO, content can be drastically reduced. Exposing TiO, NPs on the surface
significantly influences surface properties of membranes, resulting in reduction of TiO, content. The TFN
membrane could be fabricated at lower material cost compared to the nanocomposite membrane. In contrast,
photocatalytic properties of TiO, in the TFN membranes have not been widely reported. The optimum ceramic NP

content is also in the same range (0.05-0.1 wt.%) in the case of SiO, NPs 48],

2.3. Ceramic-Supported Polymer Membranes

This type of membrane is composed of a thin polymeric film (selective layer, active layer) supported on a ceramic
porous substrate (Figure 1, ¥9)). The ceramic substrates provide the superior chemical, mechanical and thermal
stabilities as well as negligible transport resistance and defines the external shape of the membrane B9, The

ceramic-supported polymer composites have attracted much attention for their significant performance in UF B,
pervaporation [BOIB253]541[55](56][57](58][49][51I[59][60][61][62][63](64] g5 separation 62!, etc. The thin polymeric layer,

which can consist of one or more intermediate layers, is prepared by processes, such as interfacial polymerization,

dip coating, etc. The level of air humidity during dip coating, drying process and polymer solution affected quality of

top thin layer significantly (63661,
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Figure 1. Structure of the ceramic-supported polymer composites.

The benefits offered by the ceramic-supported polymer membranes are mainly in high flux and long-term stability.
For example, PDMS/Al,03-ZrO, nanocomposite membrane shows about two times higher pervaporation flux of
ethanol/water than that of the PDMS/Blend cellose acetate (BCA) membrane 87 (Eigure 2). Additionally, the
separation factor decreased with temperature monotonically in the PDMS/BCA membrane, while the peak of

separation factor was shown at 50 °C in the PMDS/AI,O3.
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Figure 2. A comparison of pervaporation performance between (a) PDMS/AI,O3-ZrO, and (b) PDMS/BCA
membranes 7. Reproduced with permission. Copyright in 2011, Elsevier.

Additionally, their superior long-term stability are reported by several research groups [G2I68IEA67]  \where it is
considered to be arising from the high structural, thermal, and chemical stabilities of ceramic supports in operating
condition. In the polymer-supported membranes, swelling of the polymeric support in the operation could damage
the thin top layer, resulting in poor stability of the polymer-supported membranes. The swelling tendency is more
prominent at high temperatures. Therefore, most of the commercial PA membranes with polymer support cannot be
used above 50 °C. Contrarily, PA supported on Al,O5 tubular membrane demonstrated stable rejection and

permeation of MgCl, at 70 °C, due to the high stability of Al,O3 support which could stabilize the PA top layer 29,

It must be noted that the swelling process is different between the polymer-supported and ceramic-supported
polymer membranes (Eigure 3) 7. In the polymer support, top and support layers are swollen in a parallel
direction together (Eigure 3a). The swelling influences pore structure and membrane performance. On the contrary,
only the top layer can be swollen in the ceramic-support membranes (Figure 3b). The ceramic support maintains its
pore structure and can suppress the swelling of top polymeric layer. Therefore, influence of the swelling is reduced
in the polymer-supported membranes. This would be one of the reasons behind the superior performance of the
ceramic-supported composite polymer membranes.

{(a) Polymer support

Parallel Swelling

PDMS top layer +— (

Polymer support Polymer suppon

(b) Ceramic support Asymmetric Swelling

-— PDMS top layer ) —»

Ceramic support Ceramic support
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Figure 3. Swelling in (a) polymer-supported PDMS top layer and (b) ceramic-supported PDMS top layer 71,
Reproduced with permission. Copyright in 2011, Elsevier.

Ceramic-supported polymer composite membranes can recover their performance completely by back washing
after fouling . For example, PDMS/B-Sialon membrane is fouled by the crystallization of NaCl. After the
membrane is scoured and dried to remove the crystallized NaCl on the surface, the flux could be completely
recovered. Interestingly, for example, Menne et al. reported a reusable Al,O3; monolith support for PDADMAC/PSS
(poly(sodium 4-styrene sulfonate)) film 2. After fouling, the top PDADMAC/PSS layer is removed by sodium
hypochlorite (NaOCI) treatment. Then, a new top layer is built by the coating on the same Al,O3 monolith. Pure
water permeability does not change by the removal and rebuilding of the top layer. This reusable ceramic support

is expected to reduce material and production costs drastically.

By properly matching the properties between the ceramic support and a polymeric top layer, the ceramic-supported
polymer composite membranes can feature high permeability. Additionally, the confinement in swelling of the
polymeric top layer by a stable ceramic support provides long-term stability and allows high temperature operation.
However, further research would be required to optimize the polymer-ceramic interface, in order to tailor the high

performance of the ceramic-supported polymer composite membranes.
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