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The integrin associated protein (CD47) is a widely and moderately expressed glycoprotein in all healthy cells.

Cancer cells are known to induce increased CD47 expression. Similar to cancer cells, all immune cells can

upregulate their CD47 surface expression during infection. The CD47-SIRPa interaction induces an inhibitory effect

on macrophages and dendritic cells (dendritic cells) while CD47-thrombospondin-signaling inhibits T cells.

Therefore, the disruption of the CD47 interaction can mediate several biologic functions. Upon the blockade and

knockout of CD47 reveals an immunosuppressive effect of CD47 during LCMV, influenza virus, HIV-1,

mycobacterium tuberculosis, plasmodium and other bacterial pneumonia infections. 

CD47  immunotherapy  viral infection

1. Introduction

The CD47 is expressed on both hematopoietic and non-hematopoietic cells and plays crucial role in immune

regulation and maintenance of homeostasis . Its expression level varies depending on cell types and

pathophysiological conditions. In normal physiological conditions, all healthy cells express moderate level of CD47.

However, migrating stem cells and young red blood cells exhibit increased levels of CD47 to evade macrophage

attack . In pathologic conditions, varieties of cancer cells are known to induce increased CD47 surface

expression as a mechanism to evade macrophage mediated phagocytosis . In addition to cancer, all

immune cells upregulate CD47 upon pathogen invasion . Typically, poxvirus has been shown to encode

expression of CD47-like protein and this strongly inhibits the activation of macrophages and T cells. Thus, the

CD47 expression in poxvirus is an immune evasion mechanism to promote its virulence and pathogenesis .

The two most known interactions of CD47 is with signal regulatory protein alpha (SIRPa) and thrombospodin-1

(TSP-1). SIRPa is widely expressed on macrophages and dendritic cells while thrombonspondin-1 is a secreted

matricellular glycoprotein . The CD47-SIRPa interaction induces an antiphagocytic signal in macrophages and

dendritic cells. This interaction leads to the recruitment and activation of Src homology phosphate (SHP-1 and

SHP-2) thereby inhibiting the myosin-IIA and this results in prevention of phagocytosis . The mechanism of

CD47-mediated suppression on innate immune cells is via the recruitment and activation of Src homology two

domain-containing phosphatases, SHP-1 and SHP-2. Activated SHP-1 and SHP-2 dephosphorylate immune-

receptor tyrosine-based inhibitory motifs (ITIMs), thereby preventing downstream activation-signaling in

macrophages, dendritic cells and NK cells . The disruption of CD47/SIRPa-signaling

increases macrophage mediated phagocytosis of diseased vascular tissue and cancer cells. This leading to

regression of much different type of tumors both in vivo and in vitro . Similar to cancers, there is
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growing evidence that the inhibition of CD47/SIRPa interaction induces an antimicrobial effect during infections 

.

Thrombospondin-1 is a multifunctional protein that plays several crucial roles in regulating cell proliferation and

differentiation. Although it is shown to bind to multiple proteins, the most studied interaction is with CD47 .

The CD47-TSP-1 interaction on antigen presenting cells (APCs) inhibits inflammasomes and interleukin 1b (IL-1b)

and also inhibits T cells proliferation, activation and cytotoxicity . In addition to overexpression of CD47 by

cancer cells as a survival mechanism, TSP-1 ligation of CD47 is shown to increase proliferation and survival of

cutaneous T-cell lymphomas (CTCL) and hence blockade of CD47/TSP-1 interaction results in CTCL regression

.

As an inhibitory innate immune checkpoint molecule, the CD47-signaling pathways have been found to be an

important in regulating both innate and adaptive immunity. The blockade of CD47 using anti-CD47 antibody shows

a promising therapeutic effect on different tumors. Indeed, several studies on the genetic inactivation or blockade

of CD47 demonstrate therapeutic potential during infection. Recently, Cham et al. Shown that CD47 blockade

mediates similar immunotherapeutic effect during viral infection due to increased activation of both innate and

adaptive immune response after CD47 blockade. However, the use of anti-CD47 antibody in other infections

remains to be investigated. 

2. CD47-Blocking Antibodies

To date, several studies have been done using several anti-CD47 antibodies in various cancer studies with

insightful mechanisms of action. CD47 expression become an interesting research area when cancer cells were

known to have an increased CD47 expression as a survival mechanism and the blockade of CD47 resulted in

increased phagocytosis by macrophages and suppression of many tumors.

Due to the increased surface expression of CD47 on cancer cells, anti-CD47 can selectively target a macrophages

mediate phagocytosis and clearance. It is important to understand that blocking an antiphagocytic molecule such

as CD47 may not be enough for phagocytosis. The expression of several pro-phagocytic ligands or molecules on

the surface of stressed cells, tumor, and infected cells is important to facilitate phagocytosis. Pro-phagocytic

molecules such as phosphatidylserine, asialoglycoproteins and migration of calreticulin from the endoplasmic

reticulum to cytoplasmic membrane occur on tumor and infected cells unlike in healthy cells . Considering

the fact that healthy cells does not or express these pro-phagocytic molecules at low level, therefore the

administration of anti-CD47 may not cause phagocytosis or apoptosis on healthy cells.

Several different types of anti-CD47 antibodies such as MIAP301, MIAP410, Hu5F9-G4, CC-90002, SRF231,

B6H12.2, ALX148 has been use in during cancer and infection . The two most known clones of anti-

mouse CD47-blocking antibodies are MIAP410 and MIAP301. The MIAP410 treatment in virus infected mice is

reported to result to an increased proliferation and activation of innate and adaptive immune cells. This antibody

has been reported to have both antiviral and anti-tumor in two distinct viral infections and several tumors. The
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Hu5F9-G4 is a humanized anti-CD47 that disrupts the CD47-SIRPa interaction thereby promoting macrophage

mediated phagocytosis and elimination of several human tumors both in vivo and in vitro. Due to the unselected

inhibition of CD47, the administration of anti-CD47 antibody leads to a mild anemia as a result of increased red

blood cells attack by phagocytic cells . The CC-90,002 is also a humanized anti-CD47 Abs that is reported

to be under clinical trial for the treatment of both solid and hematologic malignancies . Another humanized

antibody (SRF 231) is also reported to be tested on pre-clinical trial for malignancies . The B6H12.2 CD47

blocking antibody has been use to suppress non-Hodgkin lymphoma tumor . The ALX148 is a more modified

version of CD47 blocking antibody by fusing the inactivated human IgG1 Fc with the modified SIRPa D1 domain.

This antibody has been reported to promote macrophages and dendritic cells activation, increased inflammatory

cytokine production and increased antitumor T cells effector function. Addition to its effective antitumor function, the

antibody does not cause anemia in an in vivo setting . All these CD47-blocking antibodies (both mouse and

humanized) unanimously show a similar immunological effect resulting in increased phagocytosis and activation of

antigen presenting cells, increased proliferation and activation of cytotoxic CD8 T cells during tumor and viral

infections.

3. CD47 Blockade and APCs Activation During Infection

As an inhibitory protein, both the genetic knockout and blockade of CD47 results in increased activation of antigen

presenting cells (APCs) during cancer and infection . Several studies reveal that the blockade of CD47 as an

antiphagocytic ligand increase the phagocytic activity and thereby enhancing antigen presentation to T cells 

. Therefore, treatment with anti-CD47 antibody increases the capacity of the APCs in bridging innate and

adaptive immune response leading to enhanced potency of T and B cells immunity. However, there are growing

evidences that the blockade of CD47 ligation can induce cancer cell apoptosis . In addition to above-mentioned

effect, the blockade of CD47 enhances interferon-I response and this was strongly associated with upregulation of

STING pathway in APCs in tumor . Demeure et al. suggests that the disruption of ligation of CD47 during

pathogen invasion may increase inflammatory cytokine response by dendritic cells . Though not well studied,

CD47 was identified as an interferon stimulated gene and as a host defense mechanism upon IFNa stimulation .

With such an immunotherapeutic effect of anti-CD47 antibody, one could speculate that the treatment of the anti-

CD47 may also increase the interferon response and APCs activation during infection.

Our recent study provides evidence that the administration of anti-CD47 leads to increased macrophages

proliferation, infiltration and uptake of virus and/or virus infected cells by macrophages during LCMV infection. The

treatment of anti-CD47 enhances the activation of antigen presenting cells as indicated by surface expression of

activation markers such CD86 and CD80 on macrophages and dendritic cells. Cham shown that in vivo

administration of anti-CD47 in wild type during LCMV infection increases et al. APCs activation as illustrated on

Figure 1. To further determine whether macrophages and/or dendritic cells are responsible for the antibody

mediated increased activation of adaptive immune response, we depleted the macrophages using clodronate. The

depletion of CD11b  macrophages followed by anti-CD47 treatment can still enhance T cells response. On the

contrary, the depletion of dendritic cells using the CD11c-DTR mice followed by anti-CD47 treatment shows
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impaired T cells response and persistence of LCMV virus replication in serum and all organs. This indicates that

macrophages may an essential innate immune cell mediating the anti-CD47 phenotype at an early time point.

However, dendritic cells and not macrophages were the most crucial cells in bridging and activation of the robust

CD8 T cells immune response. In vitro, dendritic cells—CD8Tcells co-culture with anti-CD47 treatment reveals that

blockade of CD47 in vitro can enhance dendritic cells activation in priming of CD8 T cells. This increased APC

activation status in absence of CD47-signaling amplifies T cell activation and cytotoxicity during viral infection . It

is tempting to speculate that with such an increased APC activation, this could enhance neutralizing antibody

response in a similar manner.

Figure 1. Treatment of isotype control to mice following a viral infection leads to limited change in the splenic

architecture, normal phagocytosis, normal antigen presentation and therefore resulting to a normal activation and

cytotoxicity of T cells. On the other hand, the administration of anti-CD47 antibody result to a splenomegaly,

increases phagocytosis of infected cells, increase antigen presentation, enhances T cell activation and function

and faster viral control.
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4. Conclusions

As highlighted above, both the genetic knockout and blockade of CD47 as an immunosuppressive protein leads to

an elevated innate and adaptive immune responses. The administration of anti-CD47 antibody increases the

phagocytic activities of virus infected cells, increases antigen processing and presentation by APCs and this

enhances activation capacity of antiviral CD8 T cells. Therefore, the anti-CD47 antibody increases the activation of

both innate and adaptive immune response in two distinct viral infections. With such an immune-therapeutic effect

of anti-CD47 blockade on both cancer and viral infection, this antibody would be a unique target in virus-associated

cancers such human papillomavirus, hepatitis B and hepatitis C virus, Epstein–Barr virus, human T-lymphotropic

virus, Kaposi’s sarcoma-associated herpesvirus (KSHV) and (re)emerging infections. The anti-CD47 is currently

under clinical trial for cancer and can be amenable as an immunotherapeutic target for infectious diseases.
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