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Imaging spectroscopy has emerged as a reliable analytical method for effectively characterizing and quantifying

quality attributes of agricultural products. By providing spectral information relevant to food quality properties,

imaging spectroscopy has been demonstrated to be a potential method for rapid and non-destructive classification,

authentication, and prediction of quality parameters of various categories of tubers, including potato and sweet

potato. The imaging technique has demonstrated great capacities for gaining rapid information about tuber physical

properties (such as texture, water binding capacity, and specific gravity), chemical components (such as protein,

starch, and total anthocyanin), varietal authentication, and defect aspects.

imaging spectroscopy  machine learning  food quality  potato  intelligent detection

1. Introduction

Imaging spectroscopy integrates the main features of imaging and spectroscopic technologies, which can

simultaneously acquire spatial and spectral information of an object . This technology has been widely

used in the quantitative determination and visualization of food physical and chemical values. In a hyperspectral

image, each pixel contains a continuous spectrum composed of hundreds of wavebands . The 3-dimension

(3-D) spectral image with two spatial dimensions and one spectral dimension can be generated by area scan

(tunable filter), line scan (pushbroom), or point scan (whiskbroom) . As the successor of hyperspectral

technology, multispectral technology can obtain several discrete spectral data from the test sample to characterize

a certain characteristic parameter of the object of interest . The Vis region (380–780 nm) contains spectral

information related to color characteristics. The NIR spectrum is mainly in the range of 780–2500 nm, while the

MIR spectrum is in the range of 2500–25,000 nm. The far infrared (FIR) spectrum is in the farther spectral range

(25,000–300,000 nm). NIR and MIR spectra have higher energy than FIR spectra. These two spectra are more

suitable for analyzing fingerprint information related to chemical components . NIR spectrum is used to

analyze the stretching and bending of chemical bonds, including O–H, S–H, N–H, and C–H . MIR spectrum is

mainly related to basic vibration and rotational vibration structure , which contains characteristic information

related to chemical functional groups .

The spectral parameters of the detected object and its physical or chemical properties can be correlated by

machine learning. Machine learning uses mathematical algorithms to explore the rules that exist in big data to

assist decision-making, involving unsupervised learning and supervised learning. More information about machine

learning can be found elsewhere . Based on the establishment of the calibration model, the parameter values of

unknown samples can be predicted. Machine learning methods, such as principal component regression (PCR),
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hierarchical cluster analysis (HCA), support vector machine (SVM), partial least squares regression (PLSR),

multiple linear regression (MLR), locally weighted partial least squares regression (LWPLSR), artificial neural

network (ANN), and least square support vector machine (LS-SVM), have been widely used in food analysis 

. Feature variable selection based on genetic algorithm (GA)  , competitive adaptive reweighted

sampling (CARS) , first-derivative and mean centering iteration algorithm (FMCIA) , regression coefficient

(RC), successive projection algorithm (SPA) , and principal components analysis (PCA) [ 58] help to eliminate

the feature overlap of continuous spectral information, which is conducive to the development of more robust and

simplified machine learning models . A high-performance model requires higher determination coefficients for

cross-validation ( R 2CV ) and prediction ( R 2P ), correlation coefficients for prediction ( R P ), and lower root

mean square errors for cross-validation (RMSECV) and prediction (RMSEP). Figure 1 shows the schematic of a

general framework for tuber quality determination based on imaging spectroscopy. Detailed applications of the

technology are given in the following section.

Figure 1. A typical schematic of imaging spectroscopy for tuber quality determinations.

2. Applications for Tuber Quality Assessment

The concept of agricultural intelligent sensing has attracted widespread attention. In the past few years, many

scientists have studied the feasibility of imaging spectroscopy in rapid quality assessments of potato and sweet
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potato tubers. This section provides an overview of developments and applications of this technology as listed in

Table 1 .

Table 1. Imaging spectroscopy for tuber quality assessment.

Quality Parameter Sample
Type

Spectral
Region

Optimal
Model Accuracy Reference

Freshness, Cultivar Potato Vis-NIR PLSR
0.98 for freshness, 93% for

cultivar
discrimination

Sprout Potato Vis-NIR SMTSM 89.28%

Sprouting activity Potato Vis-NIR
KNN,

PLSDA
90%

Root-knot nematodes Potato Vis-NIR PLS-SVM 100%

Zebra chip disease Potato Vis-NIR PLSDA 92%

Starch Potato Vis-NIR SVR R  = 0.93

Starch Potato Vis-NIR PLSR R  = 0.94

Escherichia coli Potato Vis-NIR BPNN 97.60%

Color, moisture
content

Potato Vis-NIR LSSVM
R  = 0.84 for color, R  = 0.77

for moisture content

TA, moisture content
Sweet
potato

Vis-NIR PLSR
R  = 0.87 for TA, R  = 0.86 for

moisture content

Moisture content
Sweet
potato

NIR PLSR R  = 0.95

SSC
Sweet
potato

Vis-NIR SVR R  = 0.86

Sulfite dioxide residue Potato NIR SVM 95%

Glucose, sucrose Potato Vis-NIR PLSR
R  = 0.90 glucose, R  = 0.82 for

sucrose

Defects Potato Vis-NIR LSSVM 90.70%

Bruise Potato Vis-NIR SVM 100%

Hardness, resilience,
springiness,

cohesiveness,
gumminess, chewiness

Potato,
sweet
potato

MIR LWPLSR R  = 0.80, 0.88, 0.58, 0.57, 0.73
and 0.69 for hardness,
resilience, springiness,
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Quality Parameter Sample
Type

Spectral
Region

Optimal
Model Accuracy Reference

cohesiveness, gumminess and
chewiness

Moisture content Potato Vis-NIR PLSR R  = 0.98 for moisture content

Dry matter, starch
Potato,
sweet
potato

NIR
MLR,
PLSR

R  = 0.96 for dry matter, R  =
0.96 for starch

Anthocyanin
Sweet
potato

Vis-NIR MLR R  = 0.87

Bruise Potato Vis-NIR GLCM 93.75%

Moisture content, FWC
Sweet
potato

Vis-NIR MLR
R  = 0.98 for

moisture content, R  = 0.93 for
FWC

Cultivar
Sweet
potato

NIR PLSDA 100%

Moisture content, color Potato Vis-NIR PLSR
R  = 0.99 for

moisture content, R  = 0.99 for
colour

VTC, TCD
Potato,
sweet
potato

NIR TBPANN
R  = 0.97 for VTC, R  = 0.98

for TCD

Variety
Potato,
sweet
potato

NIR PLSDA ≥91.60%

WBC, SG
Potato,
sweet
potato

NIR LWPCR
R  = 0.97 for WBC, R  = 0.98

for SG

Moisture content
Potato,
sweet
potato

NIR PLSR R  = 0.94

Blackspot Potato Vis-NIR PLSDA 98.56%

Starch, glucose,
asparagine

Potato Vis-NIR PLSR

R  = 0.70 for starch, R  = 0.51
for

glucose, R  = 0.70 for
asparagine

Leaf counts, glucose,
sucrose, soluble

Potato Vis-NIR PLSR R  = 0.95 for leaf counts, R  =
0.95 for glucose, R  = 0.55 for
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LWPLSR—locally weighted partial least squares regression; PLSR—partial least square regression; KNN—k-

Nearest Neighbors; LSSVM—least squares support vector machine; PLS-SVM—partial least squares support

vector machine; GLCM—gray level co-occurrence matrix; SSC—soluble solid content; SVR—support vector

regression; PLSDA—partial least square discriminant analysis; VTC—volatility of tuber compositions; TCD—tuber

cooking degree; SMTSM—supervised multiple threshold segmentation model; SVM—support vector machines;

MLR—multiple linear regression; BPNN—back-propagation neural network; TBPANN—three-layer back

propagation artificial neural network; TA—Total anthocyanin; FWC—freezable water content; R —correlation

coefficient for prediction; R —coefficient of determination for prediction.

 

 

3. Challenges and Future Prospects

In general, the feasibility of imaging spectroscopy and machine learning in intelligent determination of potato and

sweet potato quality has been confirmed by empirical studies. Portable spectroscopy systems allow users to get

real-time evaluations of food quality parameters while reducing operational uncertainty and response time. The

drawback of traditional spectroscopic methods is that spectral data are collected from a single point or from a small

portion of tested samples which may not guarantee data accuracy and representativeness. The NIR point

spectroscopy would provide a mean spectrum of several single points (average measurement) of a sample,

irrespective of the area of the sample scanned. As the spectra collected are averaged to provide a single spectrum,

the information on spatial distribution of constituents within the sample is thus lost. Hyperspectral imaging is an

advanced spectroscopic technique with the advantage of acquiring spatially distributed spectral information at each

pixel of an object, which is helpful to evaluate the heterogeneity of spectral signature captured from center and

ends of the sample. Although values of predicted concentrations were verified and comparable to the measured

values based on reference methods, to further verify these results, samples of variability including different

batches, harvesting seasons, and origins should be investigated in future research.

Quality Parameter Sample
Type

Spectral
Region

Optimal
Model Accuracy Reference

solids, specific
gravity

soluble solids, R  = 0.95 for
sucrose, R  = 0.61 for specific

gravity

Sugar-end Potato NIR PLSDA 91.70%

Cooking time Potato Vis-NIR PLSDA R  = 0.96

Scab Potato NIR SVM 97.10%

Hollow heart Potato NIR SVM 89.10%

Moisture, fat content,
color properties,
maximum force

Taro chip NIR PLSR R  = 0.85–0.97
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(a) the robustness of the models against group variability. This can be done by leaving an entire batch or cultivar

out and testing if the models still provide good predictions. Other influencing factors with different variabilities,

including samples from various batches, harvesting seasons, origins, and milling processes, should be considered;

(b) the robustness of the selected set of wavebands. This can be done by performing the selection for different

calibration and validation splits and evaluating if the same combination is always chosen. Additionally, different

sources of samples can be used to validate the selected feature variables;

(c) carefully benchmarking the new methods against state-of-the-art ones and evaluating whether the differences in

prediction performance are significant.

It has been implied that the existing spectral imaging systems are still in the developmental stage, and new

strategies should be proposed to develop real-time and low-cost detection systems for food industry. With the

further joint development of artificial intelligence and spectral imaging techniques, it could be anticipated that more

The developed machine learning methods with effective wavelength selection showed greater ability for food

quality assessment. There is no unique method to select wavelengths for a particular study. FMCIA demonstrated

good performance, but further research to improve and demonstrate the robustness of the algorithm and the logic

behind should be carried out in future. Additionally, future work is required to further investigate other chemometrics

methods. Nonlinear modelling algorithms, such as LWPLSR and LWPCR based models, showed higher

performances than linear methods. Although PLSR-based algorithms are recognized data-mining approaches,

further studies are needed to improve the prediction precision and comprehensively apply them to practical uses.

More studies are needed to further validate the performance of these approaches, and to develop novel simplified

models in visualizing tuber quality parameters. Further study should also be conducted to monitor the change of

other chemical compositions (such as ascorbic acid) in potato and sweet potato tubers. In recent years, deep

learning algorithms have become increasingly popular . One of the main reasons is the scalability of the data

sets and the performance growth of deep learning in training phase. The availability of parallel processing and

large-scale data sets simplifies the deep learning research. Deep neural networks may perform well in image

classification of various foods, but they rely on a large number of labeled samples for model training .

Additionally, the algorithm is not sufficient enough to identify objects with high occlusion. The training data set is

better to be large enough to prevent overfitting. The acquisition of large data sets often requires a large number of

images to be annotated, which is a high labor cost .

Based on these chemical-free evaluation approaches, the sample preparation time is significantly decreased, and

the errors emerged during subjective judgement are greatly reduced. On behalf of the regulatory inspection and the

goal to guarantee superior product quality in food industry, imaging spectroscopy has replenished the new

knowledge of determinations of food quality parameters. Given the flourishing innovation and progress in data

analysis and modeling recently, it is anticipated that such imaging spectroscopy will gradually become the

prevailing measurement method for quality evaluations of food products in both laboratorial and industrial scales.

Thus, the applications of imaging spectroscopy have been epitomized as potential tools for quality evaluations of

food products.

The depth of the analyses can be improved in future with respect to the following aspects:

[64]
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advanced optical and imaging instruments will be established to simultaneously acquire spectral and spatial

information of test specimens at laboratory and industrial scales.
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