Imaging Spectroscopy | Encyclopedia.pub

Imaging Spectroscopy

Subjects: Engineering, Chemical

Contributor: Wen-Hao Su

Imaging spectroscopy has emerged as a reliable analytical method for effectively characterizing and quantifying
quality attributes of agricultural products. By providing spectral information relevant to food quality properties,
imaging spectroscopy has been demonstrated to be a potential method for rapid and non-destructive classification,
authentication, and prediction of quality parameters of various categories of tubers, including potato and sweet
potato. The imaging technique has demonstrated great capacities for gaining rapid information about tuber physical
properties (such as texture, water binding capacity, and specific gravity), chemical components (such as protein,

starch, and total anthocyanin), varietal authentication, and defect aspects.

imaging spectroscopy machine learning food quality potato intelligent detection

| 1. Introduction

Imaging spectroscopy integrates the main features of imaging and spectroscopic technologies, which can
simultaneously acquire spatial and spectral information of an object HBIEIS! This technology has been widely
used in the quantitative determination and visualization of food physical and chemical values. In a hyperspectral
image, each pixel contains a continuous spectrum composed of hundreds of wavebands BB, The 3-dimension
(3-D) spectral image with two spatial dimensions and one spectral dimension can be generated by area scan
(tunable filter), line scan (pushbroom), or point scan (whiskbroom) . As the successor of hyperspectral
technology, multispectral technology can obtain several discrete spectral data from the test sample to characterize
a certain characteristic parameter of the object of interest 29[ The Vis region (380-780 nm) contains spectral
information related to color characteristics. The NIR spectrum is mainly in the range of 780-2500 nm, while the
MIR spectrum is in the range of 2500-25,000 nm. The far infrared (FIR) spectrum is in the farther spectral range
(25,000-300,000 nm). NIR and MIR spectra have higher energy than FIR spectra. These two spectra are more
suitable for analyzing fingerprint information related to chemical components 123l NIR spectrum is used to
analyze the stretching and bending of chemical bonds, including O—H, S—H, N-H, and C—-H 4. MIR spectrum is
mainly related to basic vibration and rotational vibration structure 13, which contains characteristic information

related to chemical functional groups 1811271,

The spectral parameters of the detected object and its physical or chemical properties can be correlated by
machine learning. Machine learning uses mathematical algorithms to explore the rules that exist in big data to
assist decision-making, involving unsupervised learning and supervised learning. More information about machine
learning can be found elsewhere 18], Based on the establishment of the calibration model, the parameter values of

unknown samples can be predicted. Machine learning methods, such as principal component regression (PCR),
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hierarchical cluster analysis (HCA), support vector machine (SVM), partial least squares regression (PLSR),
multiple linear regression (MLR), locally weighted partial least squares regression (LWPLSR), artificial neural
network (ANN), and least square support vector machine (LS-SVM), have been widely used in food analysis (22120
(21)[22](23] " Feature variable selection based on genetic algorithm (GA) 24 | competitive adaptive reweighted
sampling (CARS) [231128] first-derivative and mean centering iteration algorithm (FMCIA) 24, regression coefficient
(RC), successive projection algorithm (SPA) 28 and principal components analysis (PCA) [ 58] help to eliminate
the feature overlap of continuous spectral information, which is conducive to the development of more robust and
simplified machine learning models 22, A high-performance model requires higher determination coefficients for
cross-validation ( R 2CV ) and prediction ( R 2P ), correlation coefficients for prediction ( R P ), and lower root
mean square errors for cross-validation (RMSECV) and prediction (RMSEP). Figure 1 shows the schematic of a
general framework for tuber quality determination based on imaging spectroscopy. Detailed applications of the

technology are given in the following section.
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Figure 1. A typical schematic of imaging spectroscopy for tuber quality determinations.

| 2. Applications for Tuber Quality Assessment

The concept of agricultural intelligent sensing has attracted widespread attention. In the past few years, many

scientists have studied the feasibility of imaging spectroscopy in rapid quality assessments of potato and sweet
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potato tubers. This section provides an overview of developments and applications of this technology as listed in
Table 1.

Table 1. Imaging spectroscopy for tuber quality assessment.

Sample Spectral Optimal

Quality Parameter Type Region Model

Accuracy Reference

0.98 for freshness, 93% for
Freshness, Cultivar Potato Vis-NIR PLSR cultivar (301
discrimination

Sprout Potato Vis-NIR SMTSM 89.28% [21]
Sprouting activity Potato Vis-NIR PT_EEA 90% [32]
Root-knot nematodes Potato Vis-NIR ~ PLS-SVM 100% [33]
Zebra chip disease Potato Vis-NIR PLSDA 92% [34]
Starch Potato  Vis-NIR SVR Rp =0.93 [35]

Starch Potato  Vis-NIR PLSR Rp =0.94 [26]
Escherichia coli Potato Vis-NIR BPNN 97.60% (37

Color, moisture R?p = 0.84 for color, R%, = 0.77

Potato  Vis-NIR  LSSVM . (38
content for moisture content
R25 = 0.87 for TA, R%> = 0.86 for
TA, moisture content S Vis-NIR PLSR P . P [39]
potato moisture content
Moisture content Sweet NIR PLSR R% = 0.95 1401
potato
ssc SWeet s NIR SVR R% = 0.86 (41
potato
Sulfite dioxide residue Potato NIR SVM 95% [42]
Glucose, sucrose Potato Vis-NIR PLSR o = U lgllenss, ixfp = 2 oy [43]
sucrose
Defects Potato Vis-NIR LSSVM 90.70% [44]
Bruise Potato Vis-NIR SVM 100% [45]
Hardness, resilience, Potato, MIR LWPLSR Rp =0.80, 0.88, 0.58, 0.57, 0.73 [16]
springiness, sweet and 0.69 for hardness,
cohesiveness, potato resilience, springiness,

gumminess, chewiness
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. Sample Spectral Optimal
Quality Parameter Type Region  Model Accuracy Reference
cohesiveness, gumminess and
chewiness
Moisture content Potato Vis-NIR PLSR R?p = 0.98 for moisture content [46]
Potato, 2 2
MLR, R4p = 0.96 for dry matter, Rp* = [47]
Dry matter, starch sweet NIR PLSR 0.96 for starch
potato
Anthocyanin SWeet s NIR MLR R2, = 0.87 48]
potato
Bruise Potato Vis-NIR GLCM 93.75% [49]
Sweet R?p = 0.98 for
Moisture content, FWC Vis-NIR MLR moisture content, RZP =0.93 for 59
potato
FwWC
Cultivar Sweet NIR PLSDA 100% 151]
potato
R?p = 0.99 for
Moisture content, color Potato Vis-NIR PLSR moisture content, RZP =0.99 for 52]
colour
Potato, 2 2
R4 =0.97 for VTC, R“p = 0.98
VTC, TCD sweet NIR TBPANN P P [53]
for TCD
potato
Potato,
Variety sweet NIR PLSDA >91.60% [
potato
Potato, 2 _ 2 —
R<p = 0.97 for WBC, R“p = 0.98
WBC, SG sweet NIR LWPCR P P (4]
for SG
potato
Potato,
Moisture content sweet NIR PLSR R?%, = 0.94 [55]
potato
Blackspot Potato Vis-NIR PLSDA 98.56% (56l
Rzp = 0.70 for starch, RZP =0.51
Starch, glucose, . for [57]
asparagine Potato VisNIR PLSR glucose, R%p = 0.70 for
asparagine
Leaf counts, glucose, Potato Vis-NIR PLSR Rp = 0.95 for leaf counts, Rp = B

sucrose, soluble

0.95 for glucose, Rp = 0.55 for
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Sample Spectral Optimal

Quality Parameter Type Region  Model Accuracy Reference
solids, specific soluble solids, Rp = 0.95 for
gravity sucrose, Rp = 0.61 for specific
gravity
Sugar-end Potato NIR PLSDA 91.70% 591
Cooking time Potato Vis-NIR PLSDA R’» = 0.96 (691
Scab Potato NIR SVM 97.10% (61
Hollow heart Potato NIR SVM 89.10% [62]

Moisture, fat content,
color properties, Taro chip NIR PLSR R2p = 0.85-0.97 [63]
maximum force

LWPLSR—Ilocally weighted partial least squares regression; PLSR—partial least square regression; KNN—K-
Nearest Neighbors; LSSVM—Ieast squares support vector machine; PLS-SVM—partial least squares support
vector machine; GLCM—gray level co-occurrence matrix; SSC—soluble solid content; SVR—support vector
regression; PLSDA—partial least square discriminant analysis; VTC—volatility of tuber compositions; TCD—tuber
cooking degree; SMTSM—supervised multiple threshold segmentation model;, SVM—support vector machines;
MLR—multiple linear regression; BPNN—back-propagation neural network; TBPANN—three-layer back
propagation artificial neural network; TA—Total anthocyanin; FWC—freezable water content; Rp—correlation

coefficient for prediction; R2p—coefficient of determination for prediction.

| 3. Challenges and Future Prospects

In general, the feasibility of imaging spectroscopy and machine learning in intelligent determination of potato and
sweet potato quality has been confirmed by empirical studies. Portable spectroscopy systems allow users to get
real-time evaluations of food quality parameters while reducing operational uncertainty and response time. The
drawback of traditional spectroscopic methods is that spectral data are collected from a single point or from a small
portion of tested samples which may not guarantee data accuracy and representativeness. The NIR point
spectroscopy would provide a mean spectrum of several single points (average measurement) of a sample,
irrespective of the area of the sample scanned. As the spectra collected are averaged to provide a single spectrum,
the information on spatial distribution of constituents within the sample is thus lost. Hyperspectral imaging is an
advanced spectroscopic technique with the advantage of acquiring spatially distributed spectral information at each
pixel of an object, which is helpful to evaluate the heterogeneity of spectral signature captured from center and
ends of the sample. Although values of predicted concentrations were verified and comparable to the measured
values based on reference methods, to further verify these results, samples of variability including different

batches, harvesting seasons, and origins should be investigated in future research.
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The developed machine learning methods with effective wavelength selection showed greater ability for food
guality assessment. There is no uniqgue method to select wavelengths for a particular study. FMCIA demonstrated
good performance, but further research to improve and demonstrate the robustness of the algorithm and the logic
behind should be carried out in future. Additionally, future work is required to further investigate other chemometrics
methods. Nonlinear modelling algorithms, such as LWPLSR and LWPCR based models, showed higher
performances than linear methods. Although PLSR-based algorithms are recognized data-mining approaches,
further studies are needed to improve the prediction precision and comprehensively apply them to practical uses.
More studies are needed to further validate the performance of these approaches, and to develop novel simplified
models in visualizing tuber quality parameters. Further study should also be conducted to monitor the change of
other chemical compositions (such as ascorbic acid) in potato and sweet potato tubers. In recent years, deep
learning algorithms have become increasingly popular 4. One of the main reasons is the scalability of the data
sets and the performance growth of deep learning in training phase. The availability of parallel processing and
large-scale data sets simplifies the deep learning research. Deep neural networks may perform well in image
classification of various foods, but they rely on a large number of labeled samples for model training 63,
Additionally, the algorithm is not sufficient enough to identify objects with high occlusion. The training data set is
better to be large enough to prevent overfitting. The acquisition of large data sets often requires a large humber of

images to be annotated, which is a high labor cost 8],

Based on these chemical-free evaluation approaches, the sample preparation time is significantly decreased, and
the errors emerged during subjective judgement are greatly reduced. On behalf of the regulatory inspection and the
goal to guarantee superior product quality in food industry, imaging spectroscopy has replenished the new
knowledge of determinations of food quality parameters. Given the flourishing innovation and progress in data
analysis and modeling recently, it is anticipated that such imaging spectroscopy will gradually become the
prevailing measurement method for quality evaluations of food products in both laboratorial and industrial scales.
Thus, the applications of imaging spectroscopy have been epitomized as potential tools for quality evaluations of
food products.

The depth of the analyses can be improved in future with respect to the following aspects:

(a) the robustness of the models against group variability. This can be done by leaving an entire batch or cultivar
out and testing if the models still provide good predictions. Other influencing factors with different variabilities,
including samples from various batches, harvesting seasons, origins, and milling processes, should be considered;
(b) the robustness of the selected set of wavebands. This can be done by performing the selection for different
calibration and validation splits and evaluating if the same combination is always chosen. Additionally, different
sources of samples can be used to validate the selected feature variables;

(c) carefully benchmarking the new methods against state-of-the-art ones and evaluating whether the differences in
prediction performance are significant.

It has been implied that the existing spectral imaging systems are still in the developmental stage, and new
strategies should be proposed to develop real-time and low-cost detection systems for food industry. With the

further joint development of artificial intelligence and spectral imaging techniques, it could be anticipated that more
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advanced optical and imaging instruments will be established to simultaneously acquire spectral and spatial

information of test specimens at laboratory and industrial scales.
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