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The nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor central to inflammation and various malignant

diseases in humans. The regulation of NF-κB can be influenced by a myriad of post-translational modifications (PTMs),

including phosphorylation, one of the most popular PTM formats in NF-κB signaling. The regulation by phosphorylation

modification is not limited to NF-κB subunits, but it also encompasses the diverse regulators of NF-κB signaling. The

differential site-specific phosphorylation of NF-κB itself or some NF-κB regulators can result in dysregulated NF-κB

signaling, often culminating in events that induce cancer progression and other hyper NF-κB related diseases, such as

inflammation, cardiovascular diseases, diabetes, as well as neuro-degenerative diseases, etc.
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1. Brief Overview of Cancer and Key Signaling Pathways

Cancer is a diverse and multifactorial genetic disease that arises through a multistep accumulation of genetic alterations,

which causes genomic instability in a cell. This genomic instability results in aberrant cellular functions, such as

uncontrolled growth, cell death resistance, increased cell migration and invasion, evasion of immune surveillance,

metabolic reprograming, etc. . The progression of cancer is further driven by the complex interaction of malignant cells

with neighboring cells in their microenvironment .

Genetic mutations in multiple signaling pathways have been linked to cancer progression. Several typical examples

include the receptor tyrosine kinase/Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (RTK/KRAS) pathway, tumor

protein P53 (p53) pathway, transforming growth factor β (TGFβ) pathway, and phosphoinositide 3-kinase/Akt (PI-3-

kinase/Akt) pathway, etc. Interestingly, ample evidences suggest that these signaling pathways frequently promote cancer

progression through the nuclear factor κB (NF-κB) activation . For example, KRAS oncogenic mutation and p53 loss of

function mutation, which is present in approximately 25% and 50% of human tumors, respectively, leads to the constitutive

activation of NF-κB, thereby promoting cell survival in multiple cancers. . Similarly, mutations in the PI-3-Kinase/Akt

pathway, which exist in over 30% of solid tumors, promotes the activation of components in NF-κB pathway . These

examples, among many others, demonstrate the complex signaling interactions in cancer and the pivotal role that NF-κB

plays in enabling cancer progression. Hence, it is of great clinical importance to fully understand the different facets of NF-

κB regulation in cancer. In this review, we will further elaborate on the complexity of NF-κB regulation in cancer, with the

goal of providing deep insight and aiding the development strategies of novel NF-κB targeted cancer therapeutics.

2. Overview of NF-κB Signaling

Gene transcription plays a fundamental role in mediating several biological processes. Thus, strict regulation of

transcription factors is necessary to maintain cellular homeostasis. One such transcription factor is NF-κB. The

omnipresent NF-κB is a group of homo- and hetero-dimeric proteins, which was discovered about three decades ago in B

lymphocytes. NF-κB was found to bind to a B motif at the enhancer element of the κ light-chain gene to regulate its

expression . The κB motif, as it is currently termed, consists of the following sequence: 5′‐GGGRNNYYCC‐3′; wherein

Y = pyrimidine, R = purine, and N, any nucleotide. After years of continuous studies on NF-κB, additional mechanistic

insights into the roles of NF-κB and its signaling cascade—beyond B-cells—have been elucidated . Mammalian NF-κB

is composed of five-member subunits that dimerize at gene promoters to control differential gene expression. The

members of the NF-κB family include p65/RelA, RelB, c-Rel, p50/p105 (NF-κB1), and p52/p100 (NF-κB2) . These

subunits are characterized by the Rel-homology domains in their N-terminal, which contains a DNA-binding domain, a

nuclear localization sequence, and a dimerization domain. Additionally, p65, RelB, and c-Rel contain a transactivation

domain in their C-terminal, enabling their transcriptional activity. In contrast, the C-terminal region of p105 and p100, the

precursors of p50 and p52 respectively, lacks a transactivation domain but contains several ankyrin repeat sequences that

function to inhibit NF-κB . As shown in Figure 1, the mechanism of NF-κB induction is grouped into two pathways:
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canonical and non-canonical pathways. In the canonical pathway, external stimuli such as growth factors and cytokines

bind to NF-κB cell-surface receptors to activate the phosphorylation of Inhibitor of κB (IκB) by Inhibitor of κB kinase (IKK).

This phosphorylation results in IκBα degradation, causing the translocation of p65/p50 dimer to the nucleus and enabling

its binding to the respective κB elements on the genes  (Figure 1). Comparably, the non-canonical pathway

involves signaling via Cluster of differentiation 40 (CD40) receptor, Lymphotoxin-β receptor (LTβR), and BLyS receptor 3

(BR3) receptors, triggering NF-κB -inducing kinase (NIK) phosphorylation of IKKα dimers, and subsequent

phosphorylation of p100 by IKKα . This phosphorylation cascade triggers the translocation of RelB/p52 dimers into the

nucleus to modulate gene transcription  (Figure1).

3. Implication of NF-κB Signaling in Cancer

Considering the unique mechanism of gene regulation, NF-κB has been implicated in a diverse range of cellular

processes such as inflammation, cell survival, and cell differentiation. Notably, there has been a growing amount of

evidence indicating the pivotal role of NF-κB in cancer initiation and progression . NF-κB is highly involved in cell

proliferation via the regulation of cell cycle proteins. For instance, NF-κB was reported to trigger cyclin D1 expression in

breast carcinoma cells and was found to interact with cyclin-dependent kinase 2 (CDK2) and cyclin E complex in

lymphocytes . Additionally, NF-κB has been shown to contribute to most cancer hallmarks including promoting

metastasis, enabling angiogenesis, altering the tumor microenvironment, evading apoptosis, among others, in different

tumor types . Cytokines such as interleukin-17A (IL-17A) was shown to cause metastasis in hepatocellular carcinoma

(HCC) by upregulating the levels of metalloproteinases (MMP) 2 and 9 through NF-κB induction . Additionally, the

constitutive activity of NF-κB in human prostate tumors was reported to be associated with the expression of key

angiogenesis promoters such as vascular endothelial growth factor (VEGF), MMP 9, and interleukin-8 (IL-8) .

Unsurprisingly, the tumor microenvironment, which consists of various immune cells, is invariably transformed into a pro-

tumorigenic microenvironment through NF-κB signaling. NF-κB activates the expression of distinct pro-inflammatory

cytokines that engage in a feedback-loop to promote NF-κB dependent transcription of oncogenes . Alongside enabling

tumor growth, NF-κB also plays a vital role in preventing apoptosis in many cancers. For instance, inhibition of NF-κB

activity triggered apoptosis in both lung cancer and colorectal cancer cell lines . Cancer cells can evade apoptosis

by upregulating a number of NF-κB-dependent anti-apoptotic genes such as B-cell lymphoma-extra-large (Bcl-xL), FLICE-

inhibitory protein (FLIP), cellular inhibitor of apoptosis protein (c-IAP), and mouse double minute 2 homolog (Mdm2), a

negative regulator of p53. . p53 plays a key role in preserving the genomic integrity of a cell in response to

cellular stress by activating cell cycle arrest or inducing apoptosis. Thus, NF-κB signaling has been speculated to hinder

p53-induced apoptosis in response to chemotherapeutic agents used for cancer treatment .
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