Multi-Omic Approaches to Breast Cancer | Encyclopedia.pub

Multi-Omic Approaches to Breast Cancer

Subjects: Pharmacology & Pharmacy

Contributor: Antonio Pineda-Lucena

Breast cancer (BC) is the most frequently diagnosed tumor and the leading cause of cancer deaths in women

worldwide.
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| 1. Introduction

Breast cancer (BC) is the most frequently diagnosed tumor and the leading cause of cancer deaths in women
worldwide . The year 2020 saw an estimated 2.3 million new cases of BC (11.7% of all cancer cases), with
685,000 deaths worldwide [: however, advances in population screening and early treatment (among other
factors) have supported a steady decrease in BC mortality @B, Unfortunately, figures from the American Cancer
Society place the five-year survival rate after diagnosis of metastatic BC at 27%, a low value considering the 99%
five-year survival rate for localized disease [l Therefore, early BC detection represents a crucial step in reducing
disease mortality Bl. BC screening currently relies on mammography, a non-invasive strategy primarily performed
in women between 50 to 69 years of age that has prompted a reduction in BC mortality €. Nevertheless, this
approach suffers from several limitations, including false-positive reporting and overdiagnosis BIZIEIS110]
Ultrasound, magnetic resonance imaging, and computed tomography can overcome such problems thanks to their
high sensitivity; however, the elevated costs associated with these tools make this approach less accessible. Thus,

we still lack alternative methods for the accurate, non-invasive, and low-cost diagnosis of early-stage BC.

BC is a highly heterogeneous disease from a molecular perspective and is primarily characterized by the
overexpression of the HER2 growth factor, estrogen receptor (ER), and progesterone receptor (PR) and mutations
in the BRCA1/2 genes, with the latter associated with a higher risk of developing BC 1. Former classifications of
BC tumors employed tumor size, histological grade, immunohistochemistry of ER/PR status, and the amplification
of HER2. The addition of gene expression profiling to these molecular features has resulted in the classification
currently used by the European Society for Medical Oncology as a clinical guideline for BC diagnosis, follow-up,
and treatment 12131 This system classifies BC tumors into four major intrinsic molecular subgroups: luminal A
(ER+ and/or PR+, HERZ2-, low Ki67), luminal B (ER+ and/or PR+, HER2+ or HER2- with high Ki67), basal-like
(ER/PR-, HER2-), and HERZ2-enriched (ER/PR-, HER2+). Luminal A tumors (the low-grade group) are the most
common BC subtype, comprising over 60-70% of all cases. Meanwhile, basal-like tumors, with an ~80% overlap
with highly proliferative triple-negative breast cancer (TNBC) 14, exhibit aggressive behavior and suffer from poor
prognosis 22!, Although ER+ tumors present lower recurrence rates within the first five years, over 50% of tumor

recurrences occur after this time and cause most BC-related deaths 2€I17, Each BC subtype has a characteristic
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biological profile, prognosis, and treatment strategy [181291201211[22] and several scoring systems aid prognosis and
treatment decision-making processes. Unfortunately, systems based on different molecular features related to
tumor biology, including histological type, grade, lymphovascular invasion, and marker status, do not accurately
reflect BC subtype heterogeneity or specific patient subtypes 23, Thus, enormous efforts have been devoted to

classifying heterogeneous BC subtypes into molecular subtypes that guide treatment decisions [241251[261(27][28]

| 2. Multi-Omics Studies of BC Prognosis

Metabolic deregulation can impact various molecular processes (e.g., cell proliferation, apoptosis, migration, and
invasion) that contribute to tumor progression 2229811321 anqg influence cancer patient survival (Figure 2) [,
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Figure 2. Schematic representation of the impact of metabolic changes on essential molecular processes

associated with tumor progression and patient survival. Created with BioRender.com.

Several studies have reported associations between metabolic alterations and BC patient survival based on single
omic analysis, including genomic B4, transcriptomic 22, proteomic 28, and metabolomic BAEEIEA stydies in tissue
[361[341(35] and serum [E7BE8IBY sgmples. However, additional studies based on the integration of data from muilti-
omics analyses have provided more accurate information regarding the molecules involved in metabolic rewiring
associated with BC progression. Of the seven studies following a multi-omics approach to identify metabolic
alterations associated with BC prognosis (Table 3), most relied on the analysis of tissue sample analysis and the
integration of transcriptomic and metabolomic datasets. Overall, BC patient survival associated with the altered

expression of enzymes involved in nucleotide, lipid, and amino acid metabolism.

Table 3. Multi-omics studies focused on identifying metabolic alterations associated with BC prognosis.

Omics R .
Study Sample Data Major Findings
Putluri et al. 2% CeII. Ll M+T 1 RRM2 (pyrimidine metabolism)
Tissue
Luo et al. 41l Blood + Tissue M+T t RRM2 (pyrimidine m_etabollsm) gnd I AMPD1 (de novo
purine metabolism)
Igbal et al. (42 Tissue M+T 1 CBX2 and « CBX7 (glycolysis)
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Omics R .
Study Sample Data Major Findings
Camarda et al. Cell lines +
) M+T ACC2 (FA
(431 Tissue +ACC2 (FAQ)
Kang et al. [44] Cell lines L+T I ELOVL2 (lipid synthesis)
Terunuma et al. ) t 2HG, SAM and SAH
(431 Tissue MHT+P+E 1 IDH2 (glutamine metabolism)
Budczies et al. , L ABAT, 1 B-alanine
' jhosphate
(48] Tissue MT (B-alanine metabolism) P
. i} yngase 2,

FAO: fatty acid oxidation, L: lipidomics, IDH2: isocitrate dehydrogenase (NADP(+)) 2, M: metabolomics, P:
proteomics, RRM2: ribonucleotide reductase regulatory subunit M2, SAH: S-adenosylhomocysteine, SAM: S-
adenosyl- methionine, T: transcriptomics, 2HG: 2-hydroxyglutarate. * Direction of metabolic alterations directly

correlated with worse BC patients’ outcomes.

Previous studies have demonstrated that nucleotide biosynthesis plays a vital role in BC “Z[48I49]50151] gnd could
represent a promising therapeutic strategy (2215315341 Notably, two of the multi-omics studies included in Table 3
established an inverse correlation between the expression levels of genes involved in de novo purine and
pyrimidine syntheses and BC patient survival 4149, pytluri et al. performed an in silico analysis to evaluate the
association between omics-based enrichment and patient survival, using ten independent gene expression data
sets to select clinically relevant prognostic biomarkers 49, Kaplan—-Meyer curves revealed an association between
increased expression of pyrimidine metabolism-related genes and shorter metastasis-free survival across all BC
and within the subset of ER + tumors. RRM2, a critical gene in pyrimidine metabolism displaying elevated
expression in aggressive BC 581 has prognostic relevance in BC B8IBY when combined with proliferation markers
(58 RRM2 expression distinguished good vs. poor survival within the entire BC patient group in this multi-omics
study, including a significant proportion of luminal A subtype typically considered to have better survival outcomes
8] |uo and colleagues integrated metabolomic and transcriptomic analysis to confirm the association between
alterations in nucleotide metabolism and BC patient survival in a TCGA cohort of patients 2. The authors
observed a significant correlation between poor survival of BC patients and changes to the expression of RRM2
and adenosine monophosphate deaminase 1 (AMPD1), a key enzyme in de novo purine synthesis. These

enzymes have been postulated as promising therapeutic targets in different tumor types, including BC [2Ql531(591(60]
[61](62]

Igbal et al. established antagonistic roles of CBX2 and CBX7 in metabolic reprogramming of BC and an association
with BC patient survival 2. The authors described a significant correlation between higher CBX2 and lower CBX7
MRNA levels and worse BC prognosis, which agrees with previous findings that correlated the CBX2 or CBX7

expression with overall patient survival [63164]65][66]

As for the alterations in lipid metabolism, Camarda and colleagues followed a targeted metabolomics approach and

reported the dramatic upregulation of FAO intermediates in a MYC-driven model of TNBC 3], To characterize a
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potential association between FAO gene expression and prognosis in TNBC, the authors performed a univariate
analysis of 336 fatty acid metabolism genes on a patient cohort with long-term distant recurrence-free survival
data. The analysis revealed that decreased ACACB (acetyl-CoA carboxylase 2, ACC2) expression levels
associated with worse prognoses in all BC and TNBC patients. Subsequent studies also described significant
associations between increased levels of ACC2 and better BC prognosis BAE8I6A70  Kang et al. conducted a
multi-layered lipidomics and transcriptomics analysis to describe the rewiring of the BC lipidome during malignant
transformation 4], Analyses in a spheroid-induced epithelial-mesenchymal transition (EMT) model demonstrated a
dramatic reduction in the ratio of C22:6n3 (docosahexaenoic acid, DHA) to C22:5n3 in spheroid cells, similarly to
the down-regulation of ELOVL2, a process associated with the induction of metastatic characteristics in BC cells.
The authors examined the relationship between ELOVL2 expression and metastatic relapse-free in a BC cohort
with a follow-up of ten years, resulting in the discovery of an association between lower ELOVL?2 expression levels
and shorter metastasis-free survival and higher tumor grade “4. A recent study investigating the molecular
mechanisms of tamoxifen resistance in BC confirmed these findings and described lower ELOVL2 expression in

tamoxifen-resistant models and ELOVL2 downregulation in patients with tamoxifen resistance [,

Additional studies have revealed a correlation between alterations in the levels of genes and metabolites involved
in amino acid metabolism and BC prognosis. Terunuma and coworkers identified a subset of BC tumors
accumulating high levels of 2-hydroxyglutarate (2HG). Further analyses revealed the presence of a subgroup of BC
patients with significantly decreased survival characterized by an exceptionally high accumulation of 2HG, reduced
DNA methylation at the isocitrate dehydrogenase (IDH2) locus, increased IDHZ2 expression, and increased levels of
S-adenosyl- methionine (SAM) and S-adenosylhomocysteine (SAH) (3l Previous studies reported an
accumulation of the oncometabolite 2HG in different tumor types, including BC 2], glioma 28], and leukemia 4!, In
another study, concerning amino acid metabolism, Budczies et al. described an association between alterations in
the metabolism of B-alanine and shorter recurrence-free survival of BC patients 48, Specifically, the authors
demonstrated that lower expression levels of 4-aminobutyrate aminotransferase (ABAT), which negatively
correlated with the concentration of -alanine, indicated worse prognoses in BC patients. A similar study reported
decreased ABAT expression in more aggressive BC subtypes, which correlated with an increased risk of
metastasis and shorter overall, relapse-free, and distant metastasis-free survival 2. Finally, Jansen et al.
correlated ABAT downregulation with poor progression-free and metastasis-free survival in tamoxifen-treated
patients [Z8],

| 3. Multi-Omics Studies and Novel BC Treatment Strategies

Omics-based technologies have also been used to identify novel therapeutic targets and monitor biological
alterations related to BC metabolism following treatment [ZIZ8IZAABAIBLIB2]B3[B4]85] The majority of studies relied

on the application of metabolomics-based approaches in BC tissue [BA82 and serum [ABLIE3] sgmples, although
groups have evaluated transcriptomic B8Z8 and proteomic B2 profiles in tissue samples. Various studies have
described how the combination of omics approaches could characterize specific targets and foster the

development of novel therapeutic strategies for specific subgroups of BC patients [EZB8IE |n particular, multi-
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omics studies have focused on identifying and validating metabolic enzymes as promising therapeutic strategies
for the treatment of different BC tumors (Table 4). Figure 3 illustrates those metabolic-related genes proposed as
potential therapeutic targets for treating BC patients in these studies. Overall, these findings suggest the
therapeutic potential of inhibiting specific metabolic enzymes associated with glycolysis or involved in nucleotide,

amino acid, and lipid metabolism in BC patients.
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Figure 3. Overview of metabolic-related therapeutic targets for the treatment of BC patients identified from multi-
omics-based studies. a-KG: alpha-ketoglutarate, ACACA: acetyl-CoA carboxylase alpha, ADHFE1: alcohol
dehydrogenase iron containing 1, CBX2: chromobox 2, CBX7: chromobox 7, CPT1: carnitine palmitoyltransferase
1A, CPT2: carnitine palmitoyltransferase 2, ECT: electron transport chain, ELOVL1: ELOVL fatty acid elongase 1,
ELOVL2: ELOVL fatty acid elongase 2, FASN: fatty acid synthase, GLUT1: glucose transporter 1, HK: hexokinase,
INSIG1: insulin-induced gene 1, LDH: lactate dehydrogenase, OXPHOS: oxidative phosphorylation, PDC: pyruvate
dehydrogenase kinase, RRM2: ribonucleotide reductase regulatory subunit M2, SCAP: SREBF chaperone, SCD:
stearoyl-CoA desaturase, TCA: tricarboxylic acid, THRSP: thyroid hormone-responsive. Created with

BioRender.com.

Table 4. Multi-omics studies focused on developing new therapeutic strategies for the treatment of BC.

Study ODr:'t(;S BC Subtype Potential Targets
Igbal et al, 42 M+T TNBC al?lfe'”m'”a" CBX2 and CBX7
Gong et al. RJ M+T TNBC FASN and LDH
Mahendralingam et al. P+T Basal- and luminal- GLUT1, HK, LDH, and PDC
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Study ODn;;(;s BC Subtype Potential Targets
= like
p . [40] Basal- and luminal-
utluri et al. M+T like RRM2
Terunuma et al. 43! M+T+p+E  TNBC T}Eg basal- ADHFE1
" - TNBC, luminal- \cAca, ELOVLI, FASN, INSIG1, SCAP, SCD
ilvo et al. L+T and
. and THRSP
basal-like
Kang et al. [44] L+T Luminal-like ELOVL2
Camarda et al. 48] M+T TNBC and HER2 + CPT1 and CPT2

ACACA: acetyl-CoA carboxylase alpha, ADHFEL: alcohol dehydrogenase iron containing 1, CBX2: chromobox 2,
CBX7: chromobox 7, CPT1: carnitine palmitoyltransferase 1A, CPT2: carnitine palmitoyltransferase 2, E:
epigenomics, ELOVL1: ELOVL fatty acid elongase 1, ELOVL2: ELOVL fatty acid elongase 2, FASN: fatty acid
synthase, GLUTL1: glucose transporter 1, HK: hexokinase, IDH2: isocitrate dehydrogenase (NADP(+)) 2, INSIG1:
insulin-induced gene 1, L: lipidomics, LDH: lactate dehydrogenase, M: metabolomics, P: proteomics, PDC:
pyruvate dehydrogenase kinase, RRM2: ribonucleotide reductase regulatory subunit M2, SCAP: SREBF
chaperone, SCD: stearoyl-CoA desaturase, T: transcriptomics, TNBC: triple negative breast cancer, THRSP:

thyroid hormone-responsive.

Igbal and coworkers demonstrated that silencing CBX2 and CBX7 exhibited inverse effects on glycolysis, ATP
production, viability, and proliferation [59]. CBX7 overexpression provided comparable results to CBX2
knockdown, which included decreased biomass production and reduced cell viability and proliferation. These in
vitro results agreed with the findings of the transcripto-metabolomic analyses performed on BC patients and
validated the roles of CBX2 and CBX7 in metabolic reprogramming of BC, highlighting the potential of these targets
for the development of therapeutic strategies in BC. Of note, additional studies have provided similar results for
CBX2 and CBX7 in BC 88234 sancreatic adenocarcinoma 84 and metastatic prostate cancer 2. Gong and
coworkers evaluated the sensitivity of different BC metabolic phenotypes to metabolic inhibitors targeting glycolysis
or de novo fatty acid synthesis R The glycolytic BC phenotype displayed greater sensitivity to glycolytic inhibitors
(oxamate, lactate dehydrogenase (LDH) inhibitors, and 2-deoxy-D-glucose), while inhibitors of lipid synthesis
(cerulin and FASN inhibitor) exhibited higher efficacy against the lipogenic phenotype. Significantly, in vivo LDH
inhibition enhanced tumor response to anti-PD-1 immunotherapy in the BC glycolytic phenotype. Previous studies
have shown that LDH inhibition can suppress glycolysis 617 and cell proliferation 28] in BC cell lines. Differences
in sensitivity to pharmacological inhibitors targeting glycolysis or electron transport chain (ECT) subunits were
evaluated in different metabolic MECs phenotypes by Mahendralingam and colleagues RU In this study, the

glycolytic phenotype displayed greater sensitivity to inhibitors targeting glucose transporter 1 (GLUT1), hexokinase
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(HK), LDH, and pyruvate dehydrogenase kinase (PDC), which agrees with results reported by Gong et al. 29,

Furthermore, studies have demonstrated that HK inhibition prevents BC growth 2211001,

The metabolic enzyme RRM2 has also been proposed as a potential therapeutic target for the treatment of BC.
Putluri et al. observed that inhibiting RRM2 in BC cells significantly decreased proliferation and the expression of
cell cycle genes and sensitized cells to tamoxifen treatment 2%, In agreement with the potential relevance of
RRM2, additional studies have reported a reduction in proliferation B2l82 and tamoxifen resistance 1% in BC cell
lines following RRM?2 inhibition. Furthermore, associations between RRM2 overexpression and deterioration in BC

survival have been widely reported, strongly suggesting a role as a targeted therapy for BC [£1B8I57],

A multi-omics-based study by Terunuma et al. identified alterations associated with glutamine metabolism in a
subset of BC tumors 43, The authors described a subset of BC tumors with high 2HG levels and a distinct DNA
methylation pattern associated with worse prognoses. Overall, studies have underscored the critical role of
epigenetic-metabolomic interplay in promoting tumorigenesis 1921: in particular, high 2-HG levels induce epigenetic
reprogramming associated with progression in different tumors 29311041 |nterestingly, the silencing of IDH2 and
alcohol dehydrogenase iron containing 1 (ADHFE1), two enzymes implicated in the mitochondria-associated a-
ketoglutarate—dependent production of 2HG 2411193 srompted a marked reduction of endogenous 2HG in BC cells.
Furthermore, ADHFE1 loss resulted in a moderate but significant inhibition of cell cycle kinetics and reduced
migration and invasion, suggesting an oncogenic role for ADHFE1 in BC. In agreement, several studies have

associated high ADHFE1 expression levels with increased synthesis of 2HG and worse patient prognosis in BC
[106][107]

In the context of a multi-omics study focused on lipid metabolism, Hilvo et al. conducted gene silencing
experiments on seven enzymes involved in phospholipid remodeling and de novo lipid synthesis 22, The results
established that the individual inhibition of multiple lipid metabolism-regulating genes reduced the growth and
viability of BC cell lines, which agrees with studies reporting reduced cell migration, invasion, and tumor
proliferation in BC [LO8ILOAMLION ang other tumor types RLUILLAMLIS] following the inhibition of specific lipid
metabolism-related enzymes. Interestingly, a more recent study described FASN, another enzyme involved in de

novo lipid metabolism, as a promising therapeutic target for BC treatment [114],

The results of a multi-omics-based study conducted by Kang et al. revealed lipid composition alterations during the
EMT in BC 4], The inhibition of ELOVL?2 increased malignant potential, higher migration rate, and elevated colony
formation. Mechanistically, downregulation of ELOVLZ2 increased sterol regulatory element-binding transcription
factor 1 (SREBP1) expression in BC cells and activated lipogenesis, a process associated with the promotion of
malignant BC phenotypes. SREBP1 is a crucial regulator of fatty acid metabolism and plays a pivotal role in the
transcriptional regulation of different lipogenic genes mediating lipid synthesis 1131161 SREBPI overexpression
has been observed in different tumor types, including BC [B2[117[118] and supports the malignant BC phenotype
(1101 Finally, Camarda et al. suggested the inhibition of FAO as a novel therapeutic target in a MYC-driven model of
TNBC 8l Based on the characterization of the effects of small-molecule inhibition and knock-down of carnitine

palmitoyltransferase 1A (CPT1) and carnitine palmitoyltransferase 2 (CPT2) in BC cell lines, the authors
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demonstrated that FAO plays an essential role in this BC model. Furthermore, in vivo experiments demonstrated
that treatment with etomoxir, a CPT1 inhibitor, significantly attenuated tumor growth in various BC models.
Additional studies have also demonstrated that individual knockdown of both CPT enzymes reduces FAO
metabolism and cell proliferation in different tumors 1221120111211 | addition, more recent studies suggested CPT1
as a potential BC tumor target [122][123]
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