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The accurate and effective prediction of the traffic flow of vehicles plays a significant role in the construction and planning

of signalized road intersections. The application of artificially intelligent predictive models in the prediction of the

performance of traffic flow has yielded positive results. However, much uncertainty still exists in the determination of which

artificial intelligence methods effectively resolve traffic congestion issues, especially from the perspective of the traffic flow

of vehicles at a four-way signalized road intersection.
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1. Introduction

In developed and developing countries, traffic congestion at signalized road intersections has become a central issue.

Efficient and effective traffic flow prediction in road transportation is one of the most fundamental characteristics of smart

cities and intelligent transportation systems . It is imperative to transportation researchers and pedestrians . Having

up-to-date traffic flow information for traffic congestions on freeways and knowing the level of the traffic volume of vehicles

at road intersections in advance plays an important role in assisting transportation and civil engineers in developing and

implementing transportation planning strategies, improving the efficiency of traffic network operations, and reducing the

problem of traffic congestions on freeways and road intersections. Another advantage of having up-to-date traffic flow

information is that it assists road users in orientating the travel routes to use when traveling to avoid getting stuck in traffic.

It also reduces travel times on the road.

Therefore, these advantages listed above have made traffic flow prediction an indispensable branch of road transportation

and have attracted attention from various transportation researchers over the last few decades. However, transportation

researchers have made many attempts to improve traffic flow prediction using outdated and classical models. Many have

applied traditional statistical techniques to predict traffic flow problems in the last 20 years, such as the Autoregressive

Integral Moving Average (ARIMA) . This traditional model is only appropriate for traffic flow predictions that are linear in

nature and stable . Other traditional models—such as the Support Vector Machine (SVM) , Support Vector Regression

Machine (SVR) , Bayesian method , and K-nearest neighbour —are models which are all applied in traffic flow

prediction, with the aim of processing non-linear traffic datasets. Still, their prediction performance depends on cautious

characteristic engineering, making these models inapplicable to the Spatio-temporal correlation analysis of traffic flow

datasets.

Over the last few years, many machine-learning methods have been used to address the problems of traffic flow

predictions. A typical example of this is when  applied a Graph Convolutional Network (GCN) to accurately extract the

spatial characteristics of a traffic road network. However, all of these traditional statistical methods have yielded positive

results in the prediction of traffic flow. However, past related research has shown that most of these neural networks still

lack accuracy and effectiveness in terms of regression values when compared to heuristics and hybrid models.

Research findings, over the years, have proven that traditional models cannot handle a large volume of traffic data. One

major theoretical issue that has dominated the field of transportation for many years is that if a large volume of traffic

datasets is not handled (divided into inputs and outputs) properly, this can decrease the accurate prediction of traffic flow

at road intersections or freeways.

2. Related Studies

In the last few years, transportation researchers have carried out a lot of research on the occurrence of traffic congestion

in road transportation and the prediction of the traffic flow at various road networks. However, few researchers have drawn

on any structured research into traffic flow prediction at signalized road intersections using hybrid and heuristic predictive
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models. Previous studies by D’Andrea and his co-worker Marcelloni created an expert system for detecting traffic

congestions at various road networks by using traffic data that comprises the past and current vehicular speed .

Related research to  was proposed by , in which a method called “scalable” was used to predict the traffic

congestion of vehicles in a grid framework. Anwar and co-workers applied a spectral clustering-based method to

supervise traffic congestions . Considering the traffic flow density and different types of roads, Liang and co-workers

developed a novel prediction model capable of estimating the next-time step traffic volume using a single road traffic

segment to clarify traffic congestions using traffic flow variables such as the current inflow, outflow, and traffic volume, etc.

.

However, the research carried out by Xiangjie and co-workers improved the model of  by using a support vector

machine (SVM) for the prediction of the next time-step traffic speed and traffic volume and used it in the estimation of

traffic congestion of segments roads . Researchers such as  proposed a specialized density-based spatial clustering

application (DBSCAN) using a noise algorithm. This was developed for the detection and analysis of a consistent

congested cluster of grids. They investigated a deep-learning-based prediction model using a restricted Boltzmann

Machine and a Recurrent Neural Network to predict the traffic flow at congested roads . A practical traffic flow

parameter prediction model was created for traffic flow conditions estimations. An autoregressive model was combined

with other predictive models . In their research,  developed a model combining artificial neural networks and root

mean squared error. Both were used as a metric by applying singular point probabilities. Traffic congestion has become a

global pandemic that transportation researchers are racing against time to improve the effectiveness of intelligent

transportation systems. Some researchers have been able to achieve good results when it comes to traffic flow prediction.

Traffic flow prediction techniques are categorized into:

Traditional statistical techniques.

Traditional machine learning techniques.

Deep learning methods.

Traditional statistical techniques comprise the historical average method (HA) and a statistical technique called

Autoregressive Integrated Moving Average (ARIMA) . Subsequently, the features of the ARIMA model consist of the

combination of several models, such as ARIMA time series models (KARIMA)  and the Seasonal Autoregressive

Integrated Moving Average (SARIMA) . However, the major disadvantage of this type of model is the limitation in the

processing capacities in terms of non-linear and challenging traffic flow data .

Compared with the above traditional models, traditional machine learning techniques can efficiently model complex non-

linear traffic data. Typical examples are SVM  and SVR . These traditional models can map low-dimensional

non-linear data to high-dimensional space using kernel functions to evaluate traffic data characteristics for prediction.

However, the selection of the kernel function is a primary determinant affecting the performance of predictive models.

Apart from Bayesian models , K nearest neighbours  and Artificial Neural Networks (ANN)  have been applied

for the prediction of traffic flow. The significant drawback of traditional machine learning is their reliance on engineering

and the experience of experts . However, for these traditional methods, it is complex to improve the efficiency of these

predictive models when processing and evaluating complex and highly non-linear data . Currently, deep learning

techniques in transportation have yielded good results, especially in image processing and natural language processing

.

Nowadays, transportation researchers are applying deep learning methods in traffic data mining using temporal and

spatial correlation. Previous research performed by , in which they applied Deep Belief Networks (DBN) and Stacked

Autoencoder Models (SAEs) to extend and deepen the network layers for the learning of the features in traffic flow data.

Then, researchers such as  applied the combination of traffic flow and weather information to enhance the predictive

performance of the DBN model. Models such as Long Short-Term Memory (LSTM) , Gated Recurrent Unit

Network (GRU) , and Nonlinear Autoregressive with External Input (NARX)  were applied for the temporal correlation

of traffic flow data to improve the traffic flow prediction. However, these predictive models failed to consider the spatial

relationship in the structure of the traffic network. Even though Convolutional Neural Networks (CNNs)  have

made significant headway in the field of vision, transportation researchers went further in applying CNN to traffic flow

prediction to capture local spatial characteristics. Hence,  suggested Deep Spatio-Temporal Residual Networks

(STResNet) to predict the flow of people in a transportation system.

Few recent surveys have comprehensive literature reviews on traffic flow prediction in specific contexts from various

perspectives of road transportation, especially from the traffic flow of vehicles at road intersections. For example, 
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investigated the techniques and applications from the past decade and explained in detail the ten challenges and issues

experienced by pedestrians and motorists in terms of traffic flow. The investigations carried out by  were more aimed at

considering short-term traffic flow prediction. The literature reviews involved were primarily dependent on the conventional

methods of traffic flow prediction. Another piece of research by  focused on the prediction of short-term traffic flow by

summarizing the methods applied in the prediction of traffic flow. They also made some cogent suggestions for future

research.

Furthermore, research carried out by  explained, in detail, how to acquire traffic data and aimed their research at

conventional machine learning techniques. In addition to these,  indicated the contributions and research frameworks

of traffic flow prediction. The research carried out by  summarized the applicable models that depend on

conventional techniques and some early deep learning techniques. Alexander et al.  outlined a comprehensive survey

of deep neural networks to predict the traffic flow of vehicles. Their research discussed three well-known deep neural

architectures comprising convolutional, recurrent, and feed-forward neural networks. However, some recent technological

innovations involving graph-based deep learning were not discussed in their research . Likewise, researchers such as

 investigated a well-detailed survey of graph-based deep learning architecture, including their applications in the field of

traffic flow. Furthermore, , in their research, outline a survey aimed at applying deep learning models in the evaluation

and analysis of traffic flow data. However, their research neglects to focus on other areas of road transportation. They only

carried out their investigations on the prediction of traffic flow. In general, there is other research on the prediction of traffic

flow in road transportation that possesses standard features. It is always advantageous to consider all of the areas of

traffic flow. Therefore, there is still insufficient research that contributes to traffic flow prediction, especially when it comes

to traffic flow prediction using heuristics and nature-inspired algorithms.

Comparing different model specifications shows that testing results are significant in supporting the usefulness of a

proposed prediction model. For example,  investigated the usefulness and effectiveness of recent comparative research

based on short-term traffic flow forecasting. They stated that not all model comparisons are efficient, especially when

comparing a complex non-linear model and a simple linear model. In addition, there exists an almost non-existent

difference between the accuracy, simplicity, and suitability of a model (Occam’s razor). In their research,  recommend

that as much as model accuracy is very significant, it shouldn’t only be used as a yardstick in determining the appropriate

methodology for the prediction of the traffic flow of vehicles. Other challenges, such as time and effort, should be

considered when determining the development of the model, techniques, and expertise, resulting from the transferability

and suitability to changes in the temporal behaviour of traffic flow .

Even though choosing the ‘‘best’’ model in a group of baseline models using testing and comparison is significant, there is

a need for a practical option to select a heuristic or metaheuristic approach to combine traffic flow predictions. The

combination of predictive models may not likely result in a single well-specified model. A well-known case is the

forecasting of complex traffic datasets. Different researchers in traffic flow forecasting have carried out this approach of

combining predictive models;  carried out research in which they offered statistical guidelines for traffic flow by

dynamically shifting between different models. The only disadvantage of their research is that they did not provide

combined forecasts of traffic flow. Furthermore,  researched the combination of traffic flow forecasts from two neural

networks by applying the Bayesian rule. In their research,  investigated the combination of traffic flow predictions from

various types of predictive models, while  applied a fuzzy logic model to combine traffic flow forecasts. The research of

 was based on combining forecasts from three models by applying neural networks.

Traffic Flow Patterns at a Signalized Road Intersection

This subsection describes the use of a time-space diagram (Figure 1) to explain the traffic flow patterns at a four-way

signalized road intersection.
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Figure 1. Fundamental concepts of traffic flow at a signalized road intersection.

When drivers arrive at a signalized road intersection, the driver’s response to traffic lights is important in understanding

the traffic flow patterns at a road intersection, i.e., the response of drivers when the traffic lights turn red, the beginning of

the traffic signal interval when the traffic lights turn green, and the queue of the vehicles clearing from the road intersection

without any traffic control delays. This process continues back and forth from traffic lights turning to red, then to green,

and back to yellow, then to red again. These are the basic concepts behind the traffic flow of vehicles at signalized road

intersections. To explain these concepts efficiently, we are going to use a time-space diagram. Some assumptions were

made trying to explain these time-space diagrams. These assumption diagrams can be found in the book written by .

Assumption 1

Let us assume that three vehicles are traveling at a uniform speed and are approaching a signalized road intersection.

The “space” between the vehicles and the road intersection is shown on the y-axis, while the time is on the x-axis. The

three circles display the traffic lights. These traffic lights can be either green, yellow, or red, depending on real-time traffic

flow.

Assumption 2

These three vehicles have been traveling at a uniform speed. These vehicles’ trajectories are parallel and linear. The

traffic lights turn red as these vehicles reach the road intersection.

Assumption 3

As the traffic lights turned red, the three vehicles approaching the intersections had to stop, and their speed dropped

drastically. Two incoming vehicles meet the three vehicles at the road intersection, making it five vehicles in a queue at the

intersection. Deceleration has occurred, and the vehicular speed is zero. In Assumption 3, as the speed of the vehicle

drops due to the traffic lights turning red, the duration of time spent at the road intersection increases.

Assumption 4

As the traffic lights turn green, the vehicles already waiting in a queue at the road intersection start accelerating and

driving into the intersection.

Assumption 5

The vehicles arriving at the road intersections after the queue has cleared will be delayed, as the traffic lights are still

green.

Assumption 6

This is when vehicles arrive at the road intersections when the traffic lights turn yellow. Their speed gradually reduces as

they drive towards the road intersection, as the traffic lights can turn red anytime.
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Assumption 7

Now that the traffic lights have turned red, the incoming vehicles must stop and adhere to this traffic control delay and

form a new queue.

Assumption 8

This is called the “traffic shockwaves” of the queues of vehicles forming at a road intersection when the traffic lights

turn red.

This is a traffic shockwave of vehicles when the traffic lights turn green.

This is a traffic control delay for each vehicle at the intersection. This is the arrival time when vehicles arrive at a road

intersection and when they leave the intersection.

This is when two vehicles depart at the same time from the road intersection. It is called “saturation headway”.

This is the speed of the vehicles as they arrived at and departed from the road intersection.

This is called the time gap. It usually occurs between the departing vehicle and the arriving vehicle.

Assumption 9

The driver responses at signalized road intersections are shown in the Assumption 9 diagrams using figures.

The driver stopped because the traffic light was red.

This is the driver driving through the intersection when the traffic light is green.

This is the driver driving through the intersection when the queue is cleared and no vehicles are waiting at the road

intersection.

This is the driver reducing their speed because the traffic light has turned green.
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