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Age-related hearing impairment, also referred to as presbycusis, is the most common sensory impairment seen in the

elderly. As our cochlea, the peripheral organ of hearing, ages, we tend to experience a decline in hearing and are at

greater risk of cochlear sensory-neural cell degeneration and exacerbated age-related hearing impairments (e.g., gradual

hearing loss, deterioration in speech comprehension, difficulty in the localization sound sources, and ringing sensations in

the ears). Here, we outline recent research into major causal factors of age-related hearing loss including both extrinsic

(e.g. noise and ototoxic medication), and intrinsic factors (e.g. genetic predisposition, epigenetic factors and aging).
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1. Introduction

The clinical presentation of presbycusis, the rate of the progression, age at onset, and ultimate severity of hearing loss

varies from patient to patient. Whereas the majority of elderly patients present clear hearing losses, a significant fraction

of the geriatric population has almost normal hearing. This is due to intrinsic (genetic predisposition, epigenetic factors,

and aging), and extrinsic factors (e.g., noise- or ototoxic drug-exposure, head trauma, cigarette smoking) that are either

the sole etiology for hearing loss, or several work in synergy with the physiopathology of presbycusis .

2. Biological Aging on Hearing

2.1. Aging and Hearing in Healthy People

The clinical diagnosis of presbycusis is based on bilateral progressive loss of hearing starting from a high-frequency

region of the hearing spectrum. Loss of hearing can begin in young adulthood, but is initially evident at 60 years for most

people. Over time, the threshold elevation progresses to lower and lower frequency areas. However, presbycusis studies

in humans are limited by the genetic heterogeneity and the difficulty in controlling deleterious auditory exposures over

time. Despite these limitations, it has been reported that in a cohort unscreened for noise exposure, ototoxic drug

exposure, and otologic disease history, presbycusis develops earlier and to a greater extent than in a highly screened

cohort (without history of significant noise exposure or diseases that affect the ear) . It has been suggested that the

onset of hearing loss induced by biological aging is very late. Indeed, the Mabaan tribe living in the Sudanese desert

retains their hearing into old age . Because the hearing of the young Mabaans was the same as those of young people

from other countries, the good preservation of hearing in the tribe has been attributed to their quiet living environment and

generally healthy condition . However, it can be argued that this difference might be caused by genetic differences

between the populations. To answer this question, Goycoolea et al.  compared the hearing of natives of Easter Island,

people living in a pre-industrial society, with those who had emigrated to Chile and spent varying amounts of time in

modern society. Results showed that hearing in males that had lived or were living in Chile was significantly worse than

that of males who had lived their entire lives on Easter Island, and that the poorer hearing was related to the number of

years lived in modern society. Contrary to these early investigations, more recent studies showed that hearing thresholds

decline with age and the rate of decline accelerates with age in presbycusis patients without noise-exposure or diseases

that may affect the ear . In addition, the differences of hearing thresholds between presbycusis patients with or without

noise exposure are limited . These results thus supported the belief that age is one of the major causal factors of ARHL.

2.2. Aging and Hearing in Animals

To study the impact of cochlear aging on hearing, animal models are a useful tool due to their short lifespan, controlled

environments and diet composition, and limited genetic heterogeneity. Gerbils that grew up in quiet environments

showed various degrees of threshold shifts with age. The threshold shift profile was a relatively flat loss across low and

mid frequencies, with the greatest losses at the higher frequencies resembling that often seen in human presbycusis .

These animals also showed a decline of the endocochlear potential  and reduced amplitudes of compound action
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potentials of the auditory nerve . Reduced amplitudes of compound action potentials in aging ears suggested

asynchronous or poorly synchronized neural activity in the auditory nerve of quiet-aged gerbils . Cochlear morphological

examination of gerbils raised in quiet demonstrated that the most important age-related degeneration site is the stria

vascularis . The stria vascularis is essential for maintaining the endocochlear potential which is the main driving force

for the transmission of sound signals from the ear to the brain. The degeneration of marginal and intermediate cells of the

stria vascularis began in both the base and apex of the cochlea, extending to the mid-cochlear regions as age increased.

In addition, there was a loss of Na-K-ATPase  and losses of the strial capillary area in aged animals . Certainly, more

work with other species aged in quiet is needed in this area. However, existing data from quiet-aged gerbils make it clear

that in gerbils, cochlear aging impacts specifically the stria vascularis and probably the neural structures.

3. Genetic Predispositions

Presbycusis shows a clear familial association. Heritability studies of presbycusis in humans have estimated that 25% to

75% of the variance in this pathology has a genetic component . Genetic polymorphisms in the genes coding

detoxification enzymes, such as glutathion S-transferase (GSTM1 and the GSTT1 null genotypes) and N-

acetyltransferase 2 (NAT2*6A)   were reported to be linked to ARHL. SOD2 promoter variants (−38C > G) of the

SOD2 gene encoding a ubiquitous mitochondrial superoxide dismutase enzyme (MnSOD) may link to the ARHL risk in

men . The main function of uncoupling protein 2 (UCP2) is the control of mitochondria-derived oxygen species (ROS)

. In a Japanese population, UCP2 Ala55Val polymorphisms exhibited a significant association with ARHL .

An increased individual susceptibility to ARHL may rely on single nucleotide polymorphisms in the grainyhead-like 2 gene

(GRHL2), nonsyndromic sensorineural deafness type 5 (DFNA5) and potassium voltage-gated channel subfamily q

Member 4 (KCNQ4) genes, whose mutations are responsible for DFNA28, DFNA2, and DFNA5, respectively , but

also in the glutamate metabotrophic receptor 7 gene (GRM7, e.g., OMIM ID: 604101) . Finally, a common mtDNA

4977-bp deletion was frequently found in presbycusic patients .

Some genes associated with ARHL have also been identified in mice, including age-related hearing loss gene 1 (Ahl1),

localized in chromosome 10, Ahl2  on chromosome 5 (associated with early-onset hearing loss when combined with a

homozygous disease allele at the Ahl1 locus), and Ahl3 on chromosome 17 . The Ahl candidate region contains several

interesting candidate genes, including genes encoding gap-junction proteins and several collagens. Mouse strains

exhibiting ARHL are also more sensitive to noise-induced hearing loss than are other strains. Collectively, polymorphisms

in some monogenic deafness-causing genes, neurotransmitter-related genes, and genes involved in detoxification of

oxidative stress and mitochondrial function are clearly associated with ARHL.

4. Epigenetic Factors

Traditionally, genetics and adult lifestyle factors are considered to be among the main determinants of aging-associated

pathological conditions. Accumulating evidence, however, suggests that epigenetic factors may contribute to these

conditions . The term epigenetics is defined as a change in phenotype that is not caused by a change in DNA

sequence . Epigenetic regulation of gene expression may change over time due to environmental exposures in

common complex traits. The two most well understood mechanisms of epigenetic alterations that lead to these phenotypic

changes are DNA methylation and histone modifications.

4.1. DNA Methylation

Age-related changes in DNA methylation include global hypomethylation and region-specific hypermethylation . In the

cochlea, the first evidence showing that involvement of aberrant DNA methylation in presbycusis came from a study

focused on the gap junction protein b-2 (GJB2), in the cochlea of mimetic aging rats. In this study, Wu et al.  showed

that hypermethylation of the promoter region of GJB2 gene resulted in connexin 26 down-regulation and an increased risk

for presbycusis. Furthermore, Xu et al.  reported that hypermethylation of hearing-loss genes such as solute carrier

family 26 member 4 (SLC26A4, DFNB4) and purinergic receptor P2X 2 (P2RX2, DFNA41) resulted in an increased risk

for presbycusis in men. In addition, reduced expression of P2RX2, KCNQ5, ERBB3, and SOCS3 genes through DNA

hypermethylation in elderly women was associated with presbycusis . More recently, Bouzid et al. demonstrated that

hypermethylation of CpG site in the cadherin-23 (CDH23) gene is likely to be associated with presbycusis in elderly

women . These results implicate complex pathogenic mechanisms underlying ARHL.
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4.2. Histone Modification

Histone proteins including H1/H5, H2A, H2B, H3, and H4 are the chief proteins of chromatin and play an important role in

maintaining the shape and structure of a nucleosome. In the last few years, the role of histone modifications in aging and

age-related diseases has emerged. Watanabe and Bloch  investigated the modification of histones in the aged cochlea

of mice using immunohistochemistry. Acetylated histone H3 was detected in the spiral ganglion cells and the organ of

Corti of young cochlea, but not in those of aged cochlea. Conversely, dimethylatedhistone H3 was detected in the aged

group, but not in the young group. The degeneration was severest in the spira lganglion cells and the organ of Corti of the

basal turn. These results suggested that histone modifications may be involved in cochlear aging regulation.

5. Environmental Factors

The complexity of etiological factors for presbycusis begins with the number of environmental risk factors, such as

occupational or leisure noise, ototoxic medication (aminoglycoside, cisplatin, salicylate, loop diuretics…), cigarette

smoking, and alcohol abuse . However, to date, it is not clear whether these environmental factors produce some kind

of early onset and/or accelerated progression of cochlear aging or whether they act on specific pathophysiological

mechanisms. In this part of our review, we will focus on the two most-studied environmental factors: noise exposure and

ototoxic medication.

5.1. Noise Exposure

A retrospective clinical study from a large cohort of men in the Framingham Heart Study observed that in ears with

presumed cochlear damage from previous noise exposure, subsequent progression of ARHL was exacerbated at

frequencies outside the original noise-induced hearing loss . These observations suggest an age-noise interaction that

exacerbates age-related hearing loss in previously noise-damaged ears.

Increasing evidence from animal aging models indicates that early noise exposure renders the inner ears significantly

more vulnerable to aging and may have an impact on the onset and/or progression of ARHL . Indeed, Kujawa and

Liberman  found that noise exposure in young CBA/CaJ mice, an inbred mouse strain used as “good hearing” mouse

model, could trigger progressive neuronal loss and exacerbate the ARHL. Furthermore, Fernandez et al.  showed that

interactions between noise and aging might require an acute synaptopathy to accelerate cochlear aging. In addition,

repeated exposure to a short duration sound (1 h/110 dB SPL) over a long period also led to an early onset of ARHL (at

six months of age) in Wistar rats when compared to non-exposed rats in which the onset of ARHL was around 12 months

of age . Although the long-term effects of early noise exposure on the aging ear are poorly understood, these clinical

and experimental results indicate that noise exposure may modify the onset and/or progression of ARHL, particularly for

neural presbycusis.

5.2. Ototoxic Medications

To date, the influence of other environmental risk factors such as ototoxic medications, cigarette smoking, or alcohol

abuse on ARHL is less clear and often controversial. Recently, a large longitudinal cohort study (n = 3753) aimed at

elucidating the association of ototoxic medications exposure with the risk of developing hearing loss during the 10-year

follow-up period demonstrated that ototoxicity-age interactions may also exacerbate age-related hearing loss in older

adults .
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