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| 1. Introduction

Tribology has been and continuous to be one of the most relevant fields in today’s society, being present in almost
aspects of our lives. The importance of friction, lubrication and wear is also reflected by the significant share of
today’s world energy consumption L. The understanding of tribology can pave the way for novel solutions for
future technical challenges. At the root of all advances are multitudes of precise experiments and advanced
computer simulations across different scales and multiple physical disciplines [2. In the context of tribology 4.0 & or
triboinformatics 4, advanced data handling, analysis, and learning methods can be developed based upon this
sound and data-rich foundation and employed to expand existing knowledge. Moreover, tribology is characterized
by the fact that it is not yet possible to fully describe underlying processes with mathematical terms, e.g., by
differential equations. Therefore, modern Machine Learning (ML) or Artificial Intelligence (Al) methods provide
opportunities to explore the complex processes in tribological systems and to classify or quantify their behavior in
an efficient or even real-time way 2. Thus, their potential also goes beyond purely academic aspects into actual
industrial applications. The advantages and the potential of ML and Al techniques are seen especially in their ability
to handle high dimensional problems and data sets as well as to adapt to changing conditions with reasonable
effort and cost 8. They allow for the identification of relevant relations and/or causality, thus expand the existing
knowledge with already available data. Ultimately, through analyses, predictions, and optimizations, transparent
and precise recommendations for action could be derived for the engineer, practitioner, or even the potentially
smart and adaptive tribological system itself. Nevertheless, compared to other disciplines or domains, e. g.
economics and finances 4, health care [, or manufacturing processes &, the applicability of ML and Al techniques
for tribological issues is still surprisingly underexplored. This is certainly also due to the interdisciplinarity and the

guantity of heterogenous data from simulations on different scales or manyfold measurement devices with
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individual uncertainties. Furthermore, friction and wear characteristics do not represent hard data, but irreversible

loss quantities with a dependence on time and test conditions 2!,

To help pave the way, a more detailed analysis of the available ML/AI techniques as well as their applicability,
strengths and limitations with regard to the requirements of the respective tribological application scenario with its
specific, theoretical foundations is essential. Therefore, this contribution aims to introduce the trends and
applications of ML algorithms with relevance to the domain of tribology. While other reviews were more generic 19,
had a more concise scope &, or focused on a specific technique (i.e., artificial neural networks 1), this review
article is also intended to cover a wider range of techniques and in particular to shed light on the broad applicability
to various fields with tribological issues. Thus, the interested reader shall be provided with a high-level
understanding of the capabilities of certain methods with respect to the tribological applications ranging from

composite materials over drive technology or manufacturing to surface engineering and lubricant formulations.

2. Background and a Quantitative Survey on Machine
Learning in Tribology

ML is part of Al 12 and thus originally a sub-domain of computer science. Al and ML are formed by logic,
probability theory, algorithm theory, and computing 131, In a first step, ML involves designing computing systems for
a special task that can learn from training data over time and develop and refine experience-based models that
predict outcomes. The system can thus be used to answer questions in the given field 22, There are a number of
different algorithms that can be used for ML, whereby the suitability is strongly task-dependent. Generally,
algorithms can be categorized as “supervised learning” or “unsupervised learning” 2. For the former, algorithms
learn a relation from a given set of input and output data vectors. During learning, a “teacher” (e.g., an expert)
provides the correct inputs and outputs. In unsupervised learning, the algorithm generates a statistical model that
describes a given data set without the model being evaluated by a “teacher”. Furthermore, reinforcement learning
features different characteristics, although it is sometimes classified as supervised learning. Instead of induction
from pre-classified examples, an “agent” “experiments” with the system and the system responds to the
experiments with reward or punishment. The agent thus optimizes the behavior with the goal of maximizing reward
and minimizing punishment. While the classification of the three learning types mentioned above is common and
widely accepted, there is no consensus on which algorithms should be assigned to which category. One possible

allocation following [ is illustrated in Figure 1.
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Figure 1. Classification of machine learning techniques. Redrawn from [& with permission by CC BY 4.0 (Taylor

and Francis).

The basic idea of support vector machines (SVM) is that a known set of objects is represented by a vector in a
vector space. Hyperplanes are introduced into this space to separate the data points. In most cases, only the
subset of the training data that lies on the boundaries of two planes is relevant. These vectors are the name-giving
support vectors 24l To account for nonlinear boundaries, kernel functions are an essential part of SVM. By using
the kernel trick, the vector space is transformed into an arbitrarily higher-dimensional space, so that arbitrarily
nested vector sets are linearly separable 3. Decision trees (DT) are ordered, directed trees that illustrate
hierarchically successive decisions 22, A decision tree always consists of a root node and any number of inner
nodes as well as at least two leaves. Each node represents a logical rule, and each leaf represents an answer to
the decision problem. The complexity and semantics of the rules are not restricted, although all decision trees can
be reduced to binary decision trees. In this case, each rule expression can take only one of two values 18 A
possibility to increase the classification quality of decision trees is the use of sets of decision trees instead of single
trees, this is called decision forests [XZ. If decision trees are uncorrelated, they are called random forest (RF) 18],
The idea behind decision forests is that while a single, weak decision tree may not provide optimal classification, a
large number of such decision trees are able to do so. A widely used method for generating decision forests is
boosting 2. In rule-based learners , the output results from composing individual rules, which are typically
expressed in the form “If=Then”. Rule-based ML methods typically comprise a set of rules, that collectively make
up the prediction model. K-Nearest-Neighbor algorithms (kKNN) are classification methods in which class
assignment is performed considering k nearest neighbors, which were classified before. The choice of k is crucial
for the quality of the classification [18l. In addition, different distance measures can be considered 29, Artificial
neural networks (ANN) are essentially modeled on the architecture of natural brains (1. They are ‘a computing
system made up of a number of quite simple but highly interconnected processing elements (neurons), which
process information by their dynamic state response to external inputs’ 12, The so-called transfer function
calculates the neuron’s network input based on the weighting of the inputs 22, Calculating the output value is done
by the so-called activation function considering a threshold value 12122l Weightings and thresholds for each

neuron can be modified in a training process 8. The overall structure of neurons and interconnections, in
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particular how many neurons are arranged in a layer and how many neurons are arranged in parallel per layer, is
called topology or architecture. The last layer is called the output layer and there can be several hidden layers
between the input and the output layer (multilayer ANN) 221, While single-layer networks can only be used to solve
linear problems, multi-layer networks also allow the solution of nonlinear problems 2. Feedforward means, that
neuron outputs are routed in processing direction only. Recurrent networks, in contrast, also have feedback loops.
Commonly, ANNs are represented in graph theory notation, with nodes representing neurons and edges

representing their interconnections.

Already rather early works in the field of tribology from the 1980s can be assigned to the current understanding of
ML. For example, Tallian 2324 introduced computerized databases and expert systems to support tribological
design decisions or failure diagnosis. Other initial studies were concerned, for example, with the prediction of
tribological properties [22128127] o classification of wear particles [28l23] Between 1985 and today, almost 130
publications related to ML in tribology were identified within a systematic literature review (see Prisma flow chart in
Figure 2 a), whereas the number of papers initially increased slowly and more rapidly within the last decade (
Figure 2 b). During the latter period, the number of publications has more than tripled, which represents a faster
growth than the general increase in the number of publications in the field of tribology (the numbers of Scopus-
listed publications related to tribology grew by a factor of 2.3 between 2010 and today). It can therefore be highly
expected that this trend will continue and that ML techniques will also become increasingly prominent in the field of
tribology due to technological advances and decreasing barriers and preconceptions. Therefore, the analysis of the
publications with respect to the fields of application is of particular interest, which is illustrated in Figure 2 c.
Especially in the areas of composite materials, drive technology, and manufacturing, numerous successful
implementations of ML algorithms can already be found. Yet, some studies can also be found for surface
engineering, lubricant formulation or manufacturing. As depicted in Figure 2 d, ML techniques are applied for
monitoring tribo-systems or for pure analytical/diagnostic purposes, but especially for predicting and optimizing the
tribological behavior with respect to the friction and wear behavior. The scales under consideration are mainly on
the macro and/or micro level, see Figure 2 e. However, a few works also show the applicability down to the nano
scale. Finally, it could be observed that the database for training the ML algorithms can also be generated based
on numerical or theoretical fundamentals from simulation models or on information from the literature. However, the
vast majority (roughly three quarters) of the published work is based upon experimentally generated data sets (

Figure 2 f).
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Figure 2. Systematic protocol (Prisma flow chart) for the paper collection/screening (a), and number of publications

per year (b) and clustered by the area of application (c), level (d), scale (e) and database (f).
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